

Product Identification

In all communications with Pfeiffer Vacuum, please specify the information on the product nameplate. For convenient reference copy that information into the space provided

Validity

This document applies to products with the following part numbers:

TPR 280 (W filament)	TPR 281 (Ni filament)	_	
PT R26 951 PT R26 960	PT R21 951 PT R21 960	(DN 16 ISO-KF) (DN 16 CF-R) (DN 16 ISO-KF (DN 16 CF-R	long tube)

The part number (No) can be taken from the product name-

If not indicated otherwise in the legends, the illustrations in this document correspond to gauges with DN 16 ISO-KF vacuum connections. They apply other vacuum connections by analogy

We reserve the right to make technical changes without prior

All dimensions in mm.

Intended Use

The Compact Pirani Gauges TPR 280 and TPR 281 have been designed for vacuum measurement of gases in the pressure range of 5×10⁻⁴ ... 1000 hPa.

They must not be used for measuring flammable or combustible gases in mixtures containing oxidants (e.g. atmospheric oxygen) within the explosion range.

They can be operated in connection with a Pfeiffer Vacuum controller for Compact Gauges or with another evaluation

Safety

Symbols Used

Information on preventing any kind of physical injury.

WARNING

Information on preventing extensive equipment and envi-

Information on correct handling or use. Disregard can lead to malfunctions or minor equipment damage

Personnel Qualifications

Skilled personnel

All work described in this document may only be carried out by persons who have suitable technical training and the necessary experience or who have been instructed by the end-user of the product.

General Safety Instructions

• Adhere to the applicable regulations and take the necessary precautions for the process media used. Consider possible reactions between the materials and the process media.

Consider possible reactions of the process media due to the heat generated by the product (e.g. explosions).

- Adhere to the applicable regulations and take the necessary precautions for all work you are going to do and consider the safety instructions in this document
- · Before beginning to work, find out whether any vacuum components are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts

Communicate the safety instructions to all other users.

Liability and Warranty

Pfeiffer Vacuum assumes no liability and the warranty becomes null and void if the end-user or third parties

- disregard the information in this document
- use the product in a non-conforming manner
- · make any kind of interventions (modifications, alterations etc.) on the product
- use the product with accessories not listed in the product

The end-user assumes the responsibility in conjunction with the process media used.

Gauge failures due to contamination or wear and tear, as well as expendable parts (e.g. filament), are not covered by

Technical Data

Tommour Duta			
Measurement principle		rmal conductance according Pirani	
Measurement range (air, O ₂ , CO, N ₂)	5×1	10 ⁻⁴ 1000 hPa	
Accuracy (N ₂)			
1×10 ⁻³ 100 hPa	±15	5% of reading	
5×10 ⁻⁴ 1×10 ⁻³ hPa	±50	% of reading	
100 1000 hPa	±50	% of reading	
Resolution	1% of reading		
Repeatability with air			
1×10 ⁻³ 100 hPa	2%	of reading	
Output signal			
(measurement signal)			
Voltage range	VDC	0 +9.0	
Measurement range	VDC	+2.2 +8.5	
Voltage vs. pressure		logarithmic 1.0 V/decade	
Error signal	V	0 +0.5	
Filament rupture	V	+0.1	
Output impedance	Ω	2×4.7	

impedance Response time

3.0 k Ω , referenced to supply

10, short-circuit proof

common (voltage at pin 1 ≤5 V)

Adjustment one tactile switch for ATM and HV adjustment

Supply

Minimum loaded

Gauge identification

STOP DANGER

The gauge may only be connected to power supplies, instruments or control devices that conform to the requirements of a grounded extra-low voltage (PELV). The connection to the gauge has to be fused 1

Sup	ply	vol	tage
			3-

At gauge	VDC	+14 +30
Ripple	V_{pp}	≤1
Current consumption	mA	<500
		(max. starting current)
D	141	-4

Power consumption ≤1 ΑT Fuse required 1) (slow)

Electrical connection Hirschmann appliance connector male type GO 6, 6 poles Tightening torque ≤0.2 Sensor cable 5 poles plus shielding Cable length ≤150 m (5×0.25 mm²) ≤200 m (5×0.34 mm²)

Grounding concept → "Electrical Connection" connected via 1 $\text{M}\Omega$ Vacuum connection to signal common (voltage difference <15 V) Supply common to conducted separately, for signal common differencial measurement

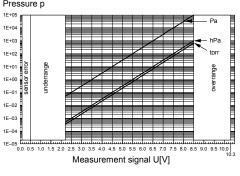
DIN 1.4301, DIN 1.4305, Materials exposed to vacuum DIN 1.4435, glass, Ni, NiFe Filament W PT R26 xxx

Internal volume

PT R21 xxx

PT R26 950, PT R21 950 cm³ PT R26 951, PT R21 951 cm³ PT R26 960, PT R21 960 cm³ PT R26 961, PT R21 961 cm³ ≈10 ≈10

Admissible pressure kPa 1000, limited to inert (abs.) gases


≈1.5

Use 2000 m NN

Mounting orientation any Degree of protection IP40

PT R26 950, PT R21 950 PT R26 951, PT R21 951		80 100
PT R26 960, PT R21 960	•	130
PT R26 961, PT R21 961		140

 $p = 10^{(U-c)}$

valid in the range 5×10⁻⁴ hPa <p< 1000 hPa 3.75×10⁻⁴ Torr <p< 750 Torr 5×10⁻² Pa <p< 1×10⁵ Pa

[hPa] 5.5 [V] 2.625 [micron] [µbar] 2.5 [V] [Pa] 3.5 [Torr] 5.625 [kPa] 6.5 [V]

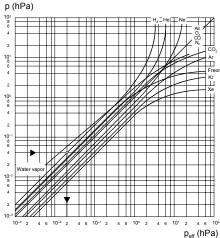
where p pressure

[V] | [mTorr] |

[V]

[V]

[V]


measurement signal

2 625

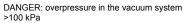
c constant (depending on pressure unit)

Gas Type Dependence

Pressure reading (gauge adjusted for air)

Calibration factors for the pressure range below 1 hPa

$p_{eff} = C \times pressure reading$


Gas type	Calibration factor C	Gas type	Calibration factor C
He Ne	0.8 1.4	H ₂ air, O ₂ , CO, N ₂	0.5 1.0
Ar	1.7	CO ₂	0.9
Kr	2.4	water vapor	0.5
Xe	3.0	freon 12	0.7

Installation

Vacuum Connection

STOP DANGER

Injury caused by released parts and harm caused by escaping process gases can result if clamps are opened while the vacuum system is pressurized

Do not open any clamps while the vacuum system is pressurized. Use the type clamps which are suited to overpressure.

STOP DANGER

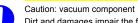
DANGER: overpressure in the vacuum system >250 kPa

KF connections with elastomer seals (e.g. O-rings) cannot withstand such pressures. Process media can thus leak and possibly damage

Use O-rings provided with an outer centering

STOP DANGER

DANGER: protective ground


Incorrectly grounded products can be extremely hazardous in the event of a fault.

The gauge must be electrically connected to the grounded vacuum chamber. This connection must conform to the requirements of a protective connection according to EN 61010:

- CF connections fulfill this requirement.
- For gauges with a KF connection, use a conductive metallic clamping ring

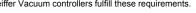
! Caution

Dirt and damages impair the function of the vacuum component.

When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.

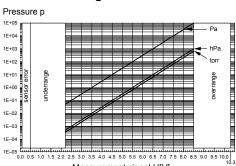
! Caution

Caution: dirt sensitive area Touching the product or parts thereof with bare hands increases the desorption rate.


Always wear clean, lint-free gloves and use clean tools when working in this area.

The gauge may be mounted in any orientation. To keep condensates and particles from getting into the measuring chamber preferably choose a horizontal to upright position and possibly use a seal with a centering ring and filter. If adjustment should be possible after the gauge has been installed, be sure to install it so that the tactile switch can be accessed with a pin (\rightarrow "Adjusting the Gauge").

Original: German BG 5178 BDE / C (2016-03)

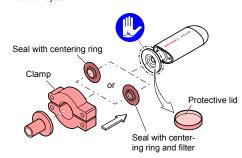


Admissible temperatures Operation Vacuum connection DN 16 ISO-KF 80 ²⁾ in horizontal moun-DN 16 CF-R °C 80 ²⁾ ting orientation Filament °C 110 -20 ... **+**65 Storage °C ≤80 at temperatures up to Relative humidity ≤+31 °C, decreasing to 50 at +40 °C indoors only, altitude up to

DN 16 ISO-KF long tube DN 16 CF-R

long tube

Measurement Signal vs. Pressure

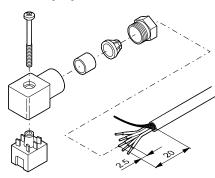


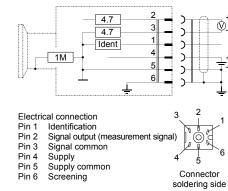
 $U = c + \log_{10} p$

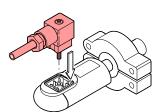
Pfeiffer Vacuum controllers fulfill these requirements

²⁾ 250 °C with long tube.

Remove the protective lid and install the product to the vacuum system




Electrical Connection


Make sure the vacuum connection is properly made (→ "Vacuum Connection").

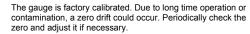
 If no sensor cable is available, make one according to the following diagram.

Connect the sensor cable to the gauge and secure the connector with the lock screw (Tightening torque

3 Connect the sensor cable to the controller.

Operation

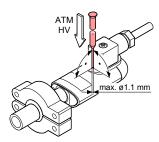
When the supply voltage is applied, the measurement signal is available between pins 2 and 3 (relationship between measurement signal and pressure → "Technical Data").


Allow a stabilization period of at least 10 minutes. It is advisable to operate the gauge continuously, irrespective of the

Gas Type Dependence

The measurement value is gas dependent. The pressure reading applies to dry air, O2, CO and N2. For other gases, it has to be corrected (\rightarrow "Technical Data").

If the gauge is operated with a Pfeiffer Vacuum controller for Compact Gauges, a calibration factor for correction of the actual reading can be applied ($\rightarrow \square$ of the corresponding


Adjusting the Gauge

For adjusting the zero, operate the gauge under the same ambient conditions and in the same mounting orientation as

The gauge is adjusted to default values. However, it can also be adjusted to other pressure values, if the exact pressure value is known (reference measurement).

- If you are using a seal with centering ring and filter, check that they are clean and replace them if necessary (→ "Deinstallation").
- Activate the gauge and operate it at atmospheric pressure for at least 10 minutes.
- Press the button with a pin (max. ø1.1 mm) and the ATM adjustment is carried out: The gauge is adjusted to 1000 hPa (8.50 VDC) by default. By pressing the button >5 s the pressure value is increased towards 1200 hPa (or, by pressing it again, decreased towards 500 hPa) until the button is released or the limit is

- Evacuate to p $\ll 10^{-4}$ hPa (recommended) or to a pressure in the range of 10⁻⁴ ... 10⁻² hPa and wait at least 2 minutes
- **5** Press the button with a pin and the HV adjustment is carried out: The gauge is adjusted to 1×10⁻⁴ hPa (1.50 VDC) by default. By pressing the button >5 s the pressure value is increased toward 1×10⁻² hPa until the button is released or the limit is reached.

Deinstallation

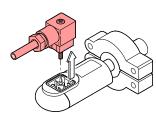
DANGER: contaminated parts Contaminated parts can be detrimental to health and environment.

Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts

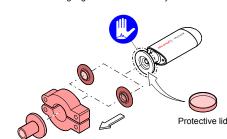
! Caution

Caution: vacuum component Dirt and damages impair the function of the vacuum component.

When handling vacuum components, take appropriate measures to ensure cleanliness and prevent damages.


! Caution

Caution: dirt sensitive area


Touching the product or parts thereof with bare hands increases the desorption rate. Always wear clean, lint-free gloves and use

clean tools when working in this area.

- Vent the vacuum system.
- Put the gauge out of operation.
- Unfasten the lock screw and unplug the sensor cable.

4 Remove the gauge from the vacuum system.

Maintenance, Repair

n case of severe contamination or a malfunction, the sensor can be replaced

Gauge failures due to contamination or wear and tear, as well as expendable parts (e.g. filament), are not covered by the warranty

Pfeiffer Vacuum assumes no liability and the warranty becomes null and void if any repair work is carried out by the end-user or third parties.

Spare Parts

When ordering spare parts, always indicate:

- all information on the product nameplate
- description and ordering number according to the spare parts list

W sensor for gauge	Ordering number	Ni sensor for gauge	Ordering number
PT R26 950	PT 120 133-T	PT R21 950	PT 120 141-T
PT R26 951	PT 120 135-T	PT R21 951	PT 120 143-T
PT R26 960	PT 120 134-T	PT R21 960	PT 120 142-T
PT R26 961	PT 120 136-T	PT R21 961	PT 120 144-T

Returning the Product

! WARNING

WARNING: forwarding contaminated products Contaminated products (e.g. radioactive, toxic, caustic or microbiological hazard) can be detrimental to health and environment.

Products returned to Pfeiffer Vacuum should preferably be free of harmful substances. Adhere to the forwarding regulations of all involved countries and forwarding companies and enclose a duly completed declaration of contami-

Products that are not clearly declared as "free of harmful substances" are decontaminated at the expense of the

Products not accompanied by a duly completed declaration of contamination are returned to the sender at his own

Disposal

STOP DANGER

DANGER: contaminated parts

Contaminated parts can be detrimental to health and environment.

Before beginning to work, find out whether any parts are contaminated. Adhere to the relevant regulations and take the necessary precautions when handling contaminated parts.

! WARNING

WARNING: substances detrimental to the environment

Products or parts thereof (mechanical and electric components, operating fluids etc.) can be

detrimental to the environment. Dispose of such substances in accordance with the relevant local regulations.

Separating the components

After disassembling the product, separate its components according to the following criteria:

- · Contaminated components
- Contaminated components (radioactive, toxic, caustic, or biological hazard etc.) must be decontaminated in accordance with the relevant national regulations, separated according to their materials, and disposed of
- Other components

Such components must be separated according to their materials and recycled

Conversion Table

	mbar	bar	Pa	hPa	kPa	Torr mm HG
mbar	1	1×10 ⁻³	100	1	0.1	0.75
bar	1×10 ³	1	1×10 ⁵	1×10 ³	100	750
Pa	0.01	1×10 ⁻⁵	1	0.01	1×10 ⁻³	7.5×10 ⁻³
hPa	1	1×10 ⁻³	100	1	0.1	0.75
kPa	10	0.01	1×10 ³	10	1	7.5
Torr mm HG	1.332	1.332×10 ⁻³	133.32	1.3332	0.1332	1
1 Do = 1 N/m ²						

EU Declaration of Conformity

We. Pfeiffer Vacuum, hereby declare that the equipment mentioned below complies with the provisions of the Directive relating to electro-magnetic compatibility 2014/30/EU and the Directive on the restriction of the use of certain hazardous substances in electrical and electronic equipment 2011/65/EU.

Products

TPR 280 TPR 281

Harmonized and international/national standards and specifi-

- EN 61000-6-2:2005
- (EMC: generic emission standard)
- EN 61000-6-3:2007 + A1:2011
- (EMC: generic immunity standard)
- EN 61010-1:2010 (Safety requirements for electrical equipment for measurement, control and laboratory use)
- EN 61326-1:2013 (EMC requirements for electrical equipment for measurement, control and laboratory use)

Manufacturer / Signatures

Pfeiffer Vacuum GmbH, Berliner Straße 43, D-35614 Asslar

15 March 2016

15 March 2016

Manfred Bender Managing director

Dr. Matthias Wiemer Managing director

Berliner Straße 43 D–35614 Asslar Tel +49 (0) 6441 802-0 Fax +49 (0) 6441 802-1202

www.pfeiffer-vacuum.com

Form under www.pfeiffer-vacuum.com