

TURBOVAC and MAG

Turbomolecular Pumps

35 - 3 200 I x s⁻¹

175.01.02 Excerpt from the Oerlikon Leybold Vacuum Full Line Catalog Product Section C09 Edition May 2007

Contents

General	
General	\$
Applications	,
Accessories	}
Products and Accessories	
Turbomolecular Pumps with Mechanical Rotor Suspension without Compound Stage)
Electronic Frequency Converters for Turbomolecular Pumps with Mechanical Rotor Suspension	}
Turbomolecular Pumps with Magnetic Rotor Suspension, with integrated Frequency Converter with Compound Stage	6
Electronic Frequency Converters for Turbomolecular Pumps with Magnetic Rotor Suspension	}
(Miscellaneous) Accessories	
Vibration Absorber)
Air Cooling Unit)
Flange Heater for CF High Vacuum Flanges	
Fine Filter	
Solenoid Venting Valve	-
Power Failure Venting Valve	-
Purge Gas and Venting Valve)
Accessories for Serial Interfaces RS 232 C and RS 485 C	;
Miscellaneous	
Service	;

General

The turbomolecular pumps from Oerlikon Leybold Vacuum generate a clean high and ultra-high vacuum, are easy to operate and are exceptionally reliable. In connection with a well rated backing pump, pressures below 10⁻¹⁰ mbar (0.75 x 10⁻¹⁰ Torr) can be attained.

Oerlikon Leybold Vacuum offers two product lines:

- 1. TURBOVAC line Turbomolecular pumps with mechanical rotor suspension
- 2. TURBOVAC MAG line Turbomolecular pumps with magnetic rotor suspension

Each of the two product lines contains "classic" turbomolecular pumps as well as turbomolecular pumps with a compound stage.

Oerlikon Leybold Vacuum is one of the world's leading manufacturer of turbomolecular pumps. Consequently, the TURBOVAC and the TURBOVAC MAG pumps are successfully used in many applications. A list of the most important ones is given in the table "Applications" in the section "General".

Principle of Operation

The turbomolecular pump is a turbine with blades. By the momentum transfer from the rapidly rotating rotor blades to the gas molecules their initially non-directed thermal motion is changed to a directed motion.

TURBOVAC TW 70 H turbomolecular pump with mechanical rotor suspension and dual compound stage

TURBOVAC TW 361 turbomolecular pump with mechanical rotor suspension

MAG W 1500 CT turbomolecular pump with magnetic rotor suspension and compound stage

Hence, the pumping process in a turbomolecular pump results from the directed motion of the gas molecules from the inlet flange to the forevacuum port.

In the molecular flow range - i.e. at pressures below 10⁻³ mbar $(0.75 \times 10^{-3} \text{ Torr})$ - the mean free path of the gas molecules is larger than the spacing between rotor and stator blades (typically some tenths of a millimeter). Consequently, the molecules collide primarily with the rotor blades with the result that the pumping process is highly efficient.

In the range of laminar flow, i.e. at pressures over 10⁻¹ mbar $(0.75 \times 10^{-1} \text{ Torr})$ the situation is completely different. The effect of the rotor is impaired by the frequent collisions between the molecules. Therefore, a turbomolecular pump is not capable of pumping gases at atmospheric pressure thus necessitating the use of a suitably rated forevacuum pump.

To create the directed motion of the gas molecules, the tips of the rotor blades have to move at high speeds. Hence, a high rotational speed of the rotor is required. In the case of Oerlikon Leybold Vacuum turbomolecular pumps the rotor speeds vary from about 36,000 rpm for the larger rotor diameters (e.g. TURBOVAC 1000 about 20 cm (7.87 in.)) to 72,000 rpm. for small rotor diameters (e.g. TURBOVAC 50 about 6 cm (2.36 in.))

Characteristic Quantities

Pumping speed (volume flow rate), S, [l x s⁻¹]

The pumping speed for a given type of gas depends on the diameter of the rotor and the high vacuum flange, the rotor/stator design, the rotor speed and the molecular weight of the gas. The pumping speed S is a non-linear function of the inlet pressure p₁: $S = S(p_1)$.

Gas throughput, Q, [mbar x I x s⁻¹]

Gas throughput Q is linked to the pumping speed S and the inlet pressure p₁ through the relationship $Q = Q(p_1) = p_1 \cdot S(p_1).$

The maximum permissible gas throughput \mathbf{Q}_{max} is attained at the maximum permissible inlet pressure p_{1, max}:

$$Q_{max} = Q(p_{1. max}).$$

Compression, K

For a given type of gas, compression K is defined as the ratio between forevacuum pressure p_{VV} (= pressure on the forevacuum side of the turbomolecular pump) and the highvacuum pressure p_{HV} (= pressure on the highvacuum side of the turbomolecular pump):

$$k = k(p_{VV}) = p_{VV} / p_{HV}$$

= $p_{VV} / p_{HV}(p_{VV})$.

Compression depends very much on the gas throughput: at a given forevacuum pressure, compression increases when the gas throughput is reduced.

Idle compression, K₀

Idle compression K_0 of a turbomolecular pump is defined as the amount of compression of this pump at "Zero" gas throughput. What is problematic about this definition is the fact that the demanded "Zero" throughput can never be implemented in practice (finite leak rate, degassing of sealing components, desorption from wall surfaces). Data on idle compression need therefore to be gained from measurements run at extremely low throughputs. Idle compression of a pump equipped with metal seals is significantly higher compared to the same pump sealed with O-rings.

Ultimate pressure (base pressure), p_{ult}, [mbar]

The ultimate pressure of a turbomolecular pump is defined as that pressure which is attained in the test chamber 48 hours after a 24 hour degassing period of the measurement system. The ultimate pressure will chiefly depend on the foreline pump used and the type of seal used at the highvacuum flange.

TURBOVAC Product Line

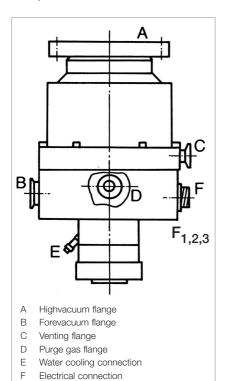
The TURBOVAC pumps are turbomolecular pumps with mechanical rotor suspension which are used in the pressure range from 10⁻¹ mbar $(0.75 \times 10^{-1} \text{ Torr}) \text{ to } 10^{-10} \text{ mbar}$ (0.75 x 10⁻¹⁰ Torr). Pumping speeds for air vary from 35 l x s⁻¹ (inlet flange diameter = 40 mm (1.57 in.)) to 1,600 l x s⁻¹ (inlet flange diameter = 250 mm (9.84 in.)).

Through the compact design, the most reliable ceramics ball bearings and the simplicity of operation, this line of pumps is used in all highvacuum and ultrahigh vacuum areas of application.

In particular the TURBOVAC pumps are very successfully operated in mass spectroscopy applications, gas and liquid chromatographic analysis, CD, DVD and hard disk production, manufacturing of large-surface optical layers, and non-corrosive semiconductor fabrication processes.

The most important advantages of the TURBOVAC product line are:

- Oil-free pumps for the generation of clean high and ultra-high vacuum conditions
- Highly performance in any orientation
- Highly degree of operating reliability
- Easy to operate
- Compact design


Ceramic Ball Bearings Technology

All TURBOVAC pumps are fitted with ceramic ball bearings, i.e. ceramic balls are running in steel races. The bearings are lubricated for life by grease.

Ceramic balls are lighter, harder and smoother than balls made of steel. Therefore, with ceramic balls the wear on the races is significantly reduced. Consequently, the lifetime of the bearings, and hence the lifetime of the pump, is increased.

The TURBOVAC pumps fitted with grease-lubricated ceramic ball bearings can be mounted in any orientation.

As the ball bearing is encapsulated, the grease can not enter the highvacuum space, even if the pump is mounted up-side-down.

Flange designations used in this product section

Connection for DC motor Connection for regulator Connection for axial sensor

 F_3

Components supplied with the Turbomolecular Pumps

Highvacuum Flange KF, ISO-K and ISO-F models

 Accessories need to be ordered separately

ANSI Models

- O-ring included in the delivery

CF Models

 Without gaskets ¹⁾, but with screws ²⁾

Forevacuum Port

 Centering rings, O-rings and clamps for all KF type forevacuum flanges are included.

Purge / vent ports are blanked-off

- 1) For CF gaskets, see Product Section C13
- 2) Only for MAG pumps

TURBOVAC MAG Product Line

The TURBOVAC MAG pumps are turbomolecular pumps with magnetic rotor suspension which are used in the pressure range from 10⁻¹ mbar (0.75 x 10⁻¹ Torr) to 10⁻¹⁰ mbar (0.75 x 10⁻¹⁰ Torr).

Pumping speeds for air vary from 300 I x s⁻¹ (inlet flange diameter = 100 mm (3.94 in.)) to 3,200 I x s⁻¹ (inlet flange diameter = 320 mm (12.6 in.)).

The TURBOVAC MAG pumps are mostly installed on semiconductor processing lines like etching, CVD, PVD and ion implantation, i.e. in applications where corrosive gases need to be pumped. Also electron beam microscopy is an important area of application for these pumps.

The most important advantages of the TURBOVAC MAG product line are:

- Hydrocarbon-free pumps for the generation of clean high and ultrahigh vacuum conditions
- High performance in any orientation
- High degree of operating reliability
- Extremely low vibration
- Designed for pumping of corrosive gases

Use of Turbomolecular Pumps in Analytical Instruments

All modern analytical methods for gas, liquid and plasma analysis - like for example GC-MS, LC-MS and ICP-MS - rely on mass spectrometers and for this reason require adequate highvacuum conditions. Also in electron microscopes and many surface analysis instruments the production of a highvacuum is essential.

In over 90 % of all highvacuum applications, the turbomolecular pump has been found to be ideal. Thanks to the hydrocarbon-free vacuum, most simple operation, compact design and almost maintenance-free operation it has in most cases displaced above all the diffusion pump.

On the basis of decades of experience and in cooperation with research facilities and the manufacturers of analytical instruments,

Oerlikon Leybold Vacuum has continually optimized its products.

Through the TURBOVAC wide range series, a further improvement has been attained, making available to users in the area of analytical engineering highly flexible and reliable products.

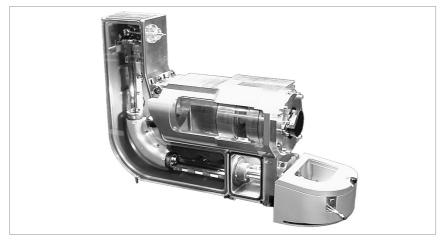
Owing to the modular concept the user may

- adapt his vacuum system precisely to his requirements
- perfectly integrate the components within his system and
- find the most cost-effective system configuration for his needs.

Moreover, in response to special customer requirements, though Oerlikon Leybold Vacuum has, through the introduction of the TURBOVAC multi inlet series, achieved a major step ahead for analytical instruments.

Up to three analysis chambers can be pumped down simultaneously by a single multi inlet pump. These pumps are fine tuned with regard to pumping speed and gas throughput so as to attain higher detection sensitivities for analytical systems, a smaller footprint and an increased sample throughput.

The benefits for the customers are the extreme compactness of the vacuum systems without sacrificing performance density, simple installation, stable vacuum connections and, compared to the use of discrete individual pumps, significantly lower investment costs for the entire system. The cartridge solution, moreover, allows for an innovative and cost-effective design of the customer's system and during servicing a simple replacement of the active unit without involved assembly work and leak searching.


Cartridge benefits, which convince

- Higher effective pumping speed
- No losses in conductance
- Compact vacuum system
- Easy pump replacement without having to disassemble the highly sensitive mass spectrometer chambers

The benefits for the customers using Oerlikon Leybold Vacuum products are reflected by the efficiency of the analytical instruments:

- Increase in detection sensitivity
- Smaller analytical systems
- Increase in sample throughput
- Reduction of system costs
- Lower maintenance costs

In combination with backing pumps like the TRIVAC or Scroll pump, Oerlikon Leybold Vacuum is able to offer the best vacuum system optimized for all major applications in the area of analytical instrumentation.

TURBOVAC multi Inlet TW 220/150/15 fitted in an analytical instrument (by courtesy of Thermo Fisher Scientific)

Use of Turbomolecular Pumps in the Area of Semiconductor **Processes**

In the semiconductor industry turbomolecular pumps are used on the following processes, among others:

- Etching
- Sputtering
- Ion implantation
- CVD
- Lithography.

In these applications pumping of aggressive gases is often required.

This may necessitate the use of pumps equipped with a purge gas facility or a magnetic suspension in order to avoid damaged bearings. Especially during metal etching, deposits may occur in the fore-vacuum space of the turbomolecular pump. In order to prevent this the pumps must be heated to a certain temperature. Such temperature controlled variants are optionally available for the MAG 1500 C, MAG 2000 C, MAG 2800 and MAG 3200. In contrast to turbomolecular pumps with mechanical bearings, magnetically levitated pumps provide the advantage that they prevent overheating of the bearings at high gas flows and effectively exclude any damage to the magnetic bearings by aggressive media.

In electron microscopes and in lithographic equipment, low vibration levels are exceptionally important. For this reason magnetically levitated turbomolecular pumps should be used here.

The recommended backing pumps are either dry compressing ECODRY pumps or rotary vane pumps from the TRIVAC range, possibly fitted with the BCS system.

Use of Turbomolecular Pumps in the Area of Coating **Systems**

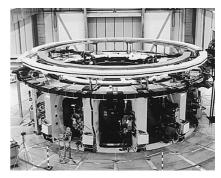
Coating of optical and magnetic storage media, optical components as well as architectural glass requires highvacuum conditions. This is the only way to ensure that the formed layers will be uniform and adhere to the substrate.

The way in which the vacuum is generated has a significant impact on the quality of the coating. By pumping the vacuum chamber down to pressures in the range of 10⁻⁶ mbar $(0.75 \times 10^{-6} \text{ Torr})$, interfering gas and water molecules are removed from the processing chamber. In the case of sputtering the coating process is run in the pressure range between 10⁻³ and 10⁻² mbar (0.75 x 10⁻³ and 0.75×10^{-2} Torr), and in the case of evaporation coating, pressures below

10⁻⁴ mbar (0.75 x 10⁻⁴ Torr) are

utilized.

The turbomolecular pump meets all requirements of the customers as to a hydrocarbon-free vacuum, very simple operation, compact design and almost maintenance-free operation in an almost ideal manner. The range of pumps from Oerlikon Leybold Vacuum includes pumps with flange diameters ranging from 40 mm to 250 mm (1.57 in. to 9.84 in.) nominal width. Thus the right pump is available for each application, be it coating of data memories (CD, DVD, hard discs), coating of tools and coating of precision lenses in the area of optical components, displays or architectural glass.

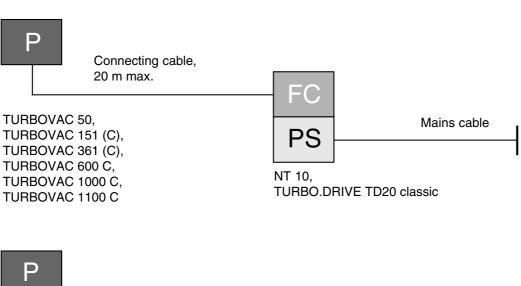


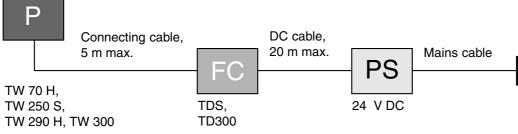
Entire high vacuum equipment of a CD/DVD coating system with TURBOVAC TW 250 S pumps

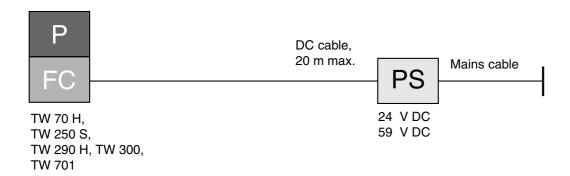
Research and Development

In the area of research, all types of turbomolecular pumps from Oerlikon Leybold Vacuum are being used.

In the case of particularly stringent requirements such as low vibration levels, a TURBOVAC with magnetic bearings should be selected; the same applies to those applications in which entirely hydrocarbon-free pump systems are required.




Nuclear fusion technology



High performance glass coating plant

Pump / Converter Configurations for TURBOVAC Product Line

P= Pump

FC = Frequency Converter

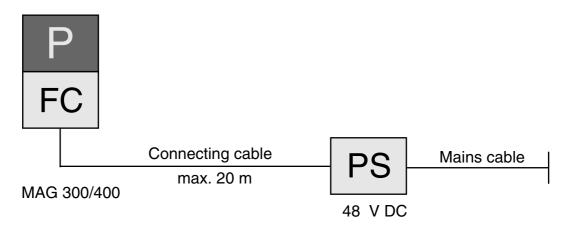
PS = Power Supply

Notes	

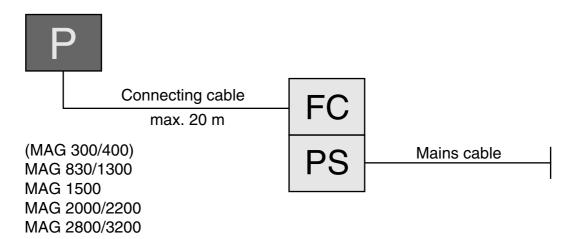
MAG W 1300 C turbomolecular pump with magnetic rotor suspension and compound stage

Magnetic Bearings Technology

The world-wide success of the TURBOVAC MAG product line results from more than 30 years of experience of Oerlikon Leybold Vacuum in the development and manufacturing of turbomolecular pumps with magnetically levitated rotors.


In 1976 Oerlikon Leybold Vacuum started the market introduction of the famous TURBOVAC 560 M. This was the first magnetically levitated turbomolecular pump which became commercially available. Today, Oerlikon Leybold Vacuum is employing the wellproven and reliable 5 axes active suspension design principle.

Five axes with active bearings


The rotor position is actively controlled by electromagnets in all 5 degrees of freedom. The TURBOVAC MAG 300/400, MAG 830/1300, MAG 1500, MAG 2000, MAG 2200 and MAG 2800/3200 are equipped with such a bearing system.

Pump / Converter Configurations for TURBOVAC MAG Product Line

With integrated Frequency Converter

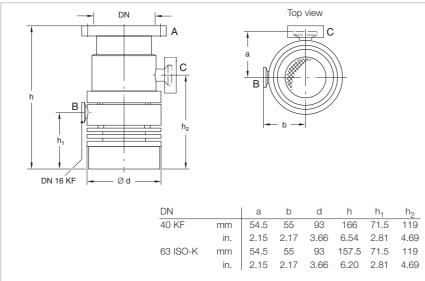
With separate Frequency Converter

Application

					//				//						//		S S S S S S S S S S S S S S S S S S S	//	0000
			/	//	//	//	//	//	//	//	//	//	//	//	//	JAOO!	*/ ^\/:	130	
A ^s			(5)/G	6)/c		ر در) (3)	2/10	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			9/10	5) (6	90/3	130	100	103	7/6	75
Purios	4	9/,	6)/6	<i>SO</i> /,	00,	700/			74/2		7/2		11/4	NR /	NA,	NA P	NA P	NA /	NA,
Applications																			
Analytical Instruments																			
Leak detectors																			
Mass spectrometers																			
Gas chromatography GC-MS)	•																		
Liquid chromatography (LC-MS)																			
Quadrupol time of flight (Q-TOF)																			
Matrix assisted laser desorption time of flight (MALDI-TOF)																			
Inductively coupled plasma mass spectrometry (ICP-MS)																			
Electron beam microscopy																			
coating																			
ata storage / optical																			
ata storage / magnetic																			
at panel displays																			
otical coating																			
rge area coating																			
ecorative coating																			
etallization																			
ear protection																			
etallurgy																			
V tube manufacturing																			
R & D Research and Development)																			
Surface analysis																			
HV / XHV systems																			
article accelerators																			
usion experiments																			
pace simulation																			
emiconductor Processes																			
oad locks and ansfer chambers	•																		
Etch																			
PECVD																			
VD																			
on implantation																			

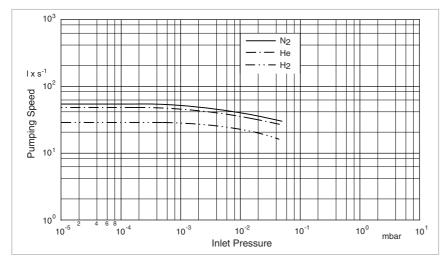
Accessories

				/	//										(MO)	8/	1230	000
Punts		/4	s)/,	(b),	60°,		0 10 10 10 10 10 10 10 10 10 10 10 10 10	24/2 24/2/2	000	74 X	14 X	1,6	MAG	N30	DIAO NAO	NAO,		000
Accessories	Page																	
Frequency converters																		
NT 10	C09.66																	
TURBO.DRIVE TD20 classic	C09.64																	
TURBO.DRIVE S	C09.67																	
Power supplies for TD S/TD 300, TW 700/701	C09.68							•										
Power supply PS 700	C09.69																	
TURBO.DRIVE TD 300	C09.70																	
Power supply TURBO.POWER 500	(C09.73)											•						
MAG.DRIVE digital	C09.98																	
ibration absorber	C09.100																	
ir cooling unit	C09.100																	
lange heaters ür CF flanges	C09.101	•			•				•			•						
Fine filter	C09.101																	
enting valves	C09.102																	
Power failure venting valve	C09.102																	
Purge gas and venting valve	C09.102	•			•													
Water cooling	_																	
Accessories for RS 232 C / RS 485 C- serial interfaces	C09.103		•		•		•		•		•	•	•		•	•		


Products and Accessories

Turbomolecular Pumps with Mechanical Rotor Suspension without Compound Stage **TURBOVAC 50**

Typical Applications


- Leak detectors
- Mass spectrometers
- Electron beam microscopy
- TV tube manufacturing
- Load locks and transfer chambers

Technical Features

- Compact design
- Operation in any orientation
- Cooling by convection is sufficient for most applications
- Air and water cooling can be added easily
- Oil-free pump for generating clean high and ultrahigh vacuum conditions

Dimensional drawing for the TURBOVAC 50

Pumping speed as a function of the inlet pressure (TURBOVAC 50 with flange DN 63 ISO-K)

- Space-saving
- Easy to integrate into complex vacuum systems
- Low operating costs
- Highly reliable operation also in processes loaded with particles

TURBOVAC 50

	O-ring sealed	O-ring sealed
Inlet flange DN	40 KF	63 ISO-K
Pump housing	Aluminum	Aluminum
Pumping speed at 10 ⁻³ mbar		
N_2 Ix s ⁻¹	33	55
He I x s ⁻¹	36	48
H ₂ I x s ⁻¹	28	30
Max. gas throughput 1) at 10 ⁻² mbar		
N ₂ mbar x I x s ⁻¹	0.30	0.40
He mbar x I x s ⁻¹	0.25	0.35
H ₂ mbar x I x s ⁻¹	0.20	0.25
Max. compression when idle		
N_2	2 · 10 ⁶	2 · 10 ⁶
Ultimate pressure with TRIVAC D 2,5 E		
mbar (Torr)	< 5 x 10 ⁻⁸ (< 3.75 x 10 ⁻⁸)	< 5 x 10 ⁻⁸ (< 3.75 x 10 ⁻⁸)
Max. foreline pressure for ${\rm N_2}$ mbar (Torr)	1 x 10 ⁻¹ (< 0.75 x 10 ⁻¹)	1 x 10 ⁻¹ (< 0.75 x 10 ⁻¹)
Recommended forevacuum pump	TRIVAC D 2,5 E	TRIVAC D 2,5 E
Run-up time		
to 95% of nominal speed min	2	2
Cooling water connection (hose nozzles)		
(for Part No. 854 08) mm (in.)	10	10
Weight, approx. kg	2	2
Max. power consumption VA	45	45

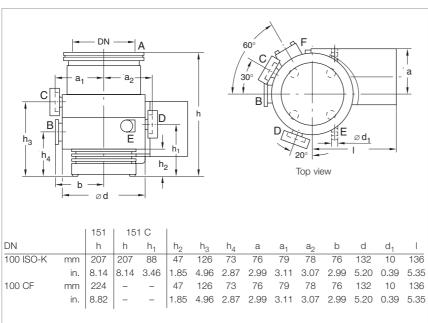
¹⁾ for continuous operation when water-cooled

TURBOVAC 50

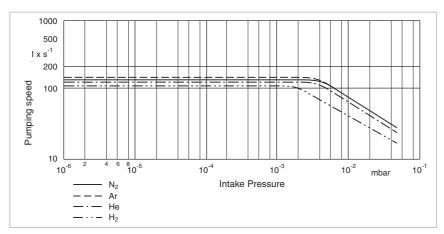
Inlet flange	Foreline flange	Cooling method	Interface	
DN 40 KF	DN 16 KF	Convection	-	Part No. 854 00
DN 63 ISO-K	DN 16 KF	Convection	-	Part No. 854 01
Accessories, nece	essary for all pumps			
Electronic frequency c	onverter NT 10			
90 - 140 V				Part No. 859 01
180 - 260 V				Part No. 859 00
Connecting cable NT 1	0 - pump			
3 m (10.5 ft)				Part No. 121 08
5 m (17.5 ft)				Part No. 121 09
Accessories, option	onal			
Air cooling unit				
230 V AC				Part No. 854 05
110 V AC				Part No. 854 06
100 V AC				Part No. 800152V0015
Water cooling kit				Part No. 854 08
Flange heater				
63 CF, 230 V, 50 Hz				Part No. 854 04
63 CF, 110 V, 60 Hz				Part No. 854 07
Vibration absorber				
DN 63 ISO-K				Part No. 800131V0063
DN 63 CF				Part No. 500 070

Notes	

TURBOVAC 151, 151 C ClassicLine



Turbomolecular pumps without a purge gas facility are only suited for pumping of air or inert gases.


They are not suited for pumping of aggressive or reactive gases.

TURBOVAC pumps with a "C" in the type designation are equipped with a purge gas facility.

The purge gas protects only the bearing area and the motor of the TURBOVAC.

Dimensional drawing for the TURBOVAC 151 and 151 C

Pumping speed as a function of the inlet pressure (TURBOVAC 151 with flange DN 100)

Typical Applications

- Leak detectors
- Mass spectrometers
- Data storage
- Optical coating
- R & D, e.g.
 - UHV systems
 - Particle accelerators
- Load locks and transfer chambers

Technical Features

- Compact design
- Operation in any orientation
- Oil-free pump for generating clean high and ultrahigh vacuumconditions

- Space-saving
- Easy to integrate into complex vacuum systems
- Low operating costs
- Highly reliable operation also in processes loaded with particles

TURBOVAC 151

Inlet flange	DN	100 ISO-K	100 CF
Pumping speed			
N_2	I x s ⁻¹	145	145
Ar	I x s ⁻¹	150	150
He	I x s ⁻¹	135	135
H ₂	I x s ⁻¹	115	115
Max. gas throughput			
N_2	mbar x I x s ⁻¹	1.5	1.5
Ar	mbar x I x s ⁻¹	1.3	1.3
H ₂	mbar x I x s ⁻¹	1.0	1.0
Compression ratio			
N_2		1 x 10 ⁹	1 x 10 ⁹
He		2×10^4	2 x 10 ⁴
H ₂		8 x 10 ²	8 x 10 ²
Ultimate pressure	mbar (Torr)	$< 1 \times 10^{-10} (< 0.75 \times 10^{-10})$	< 1 x 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)
Max. continuous inlet pressur	e ¹⁾		
	mbar (Torr)	5 x 10 ⁻² (4 x 10 ⁻²)	5 x 10 ⁻² (4 x 10 ⁻²)
Max. foreline pressure for N ₂	mbar (Torr)	$5 \times 10^{-1} (4 \times 10^{-1})$	5 x 10 ⁻¹ (4 x 10 ⁻¹)
Recommended forevacuum p	oump	from TRIVAC D 4 B to D 16 B	from TRIVAC D 4 B to D 16 B
Run-up time to 95% speed	min	≈ 2	≈ 2
Purge / vent port	DN	10 KF	10 KF
Cooling water connection			
(hose nozzles)	mm (in.)	10 (0.39)	10 (0.39)
Weight, approx.	kg (lbs)	8 (17)	88 (17)
Max. power consumption	VA	680	680
at ultimate pressure	VA	480	480

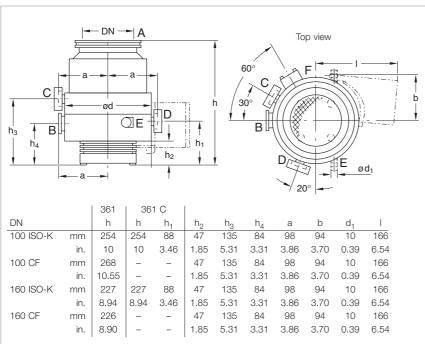
¹⁾ Water-cooled

TURBOVAC 151

Inlet flange	Foreline flange	Cooling method	Item	
DN 100 ISO-K	DN 25 KF	Water-cooled	TURBOVAC 151	Part No. 856 31
DN 100 ISO-K	DN 25 KF	Water-cooled	TURBOVAC 151 C	Part No. 856 35
DN 100 CF	DN 25 KF	Water-cooled	TURBOVAC 151	Part No. 856 32
DN 100 CF	DN 25 KF	Water-cooled	TURBOVAC 151 C	Part No. 103 41
Accessories, nec	essary for all pun	nps		
Electronic frequency	converter TURBO.DR	IVE TD20 ^{classic}		
100 - 240 V AC (-	15%/+10%)			
without interfac	e			Part No. 800075V0001
with RS 232 C i	nterface			Part No. 800075V0002
with RS 485 C i	nterface			Part No. 800075V0004
with Profibus				Part No. 800075V0003
with 25 pol I/O				Part No. 800075V0005
with DeviceNet				Part No. 800075V0006
with Ethernet/IF	•			Part No. 800075V0007
Connecting cable TU	IRBO.DRIVE TD20 class	^{sic} - pump		
3 m (10.5 ft)				Part No. 857 65
5 m (17.5 ft)				Part No. 857 66
10 m (35.0 ft)				Part No. 857 67
20 m (70.0 ft)				Part No. 857 68
50 m (175.0 ft)				Part No. 800152V0008
60 m (210.0 ft)				Part No. 800152V0007
Accessories, opt	ional			
Air cooling unit				
230 V AC				Part No. 855 31
110 V AC				Part No. 894 08
100 V AC				Part No. 800152V0016
Flange heater 100 CF	=			
230 V AC				Part No. 854 27
110 V AC				Part No. 854 28

Notes	

TURBOVAC 361, 361 C ClassicLine



Turbomolecular pumps without a purge gas facility are only suited for pumping of air or inert gases.

They are not suited for pumping of aggressive or reactive gases.

TURBOVAC pumps with a "C" in the type designation are equipped with a purge gas facility.

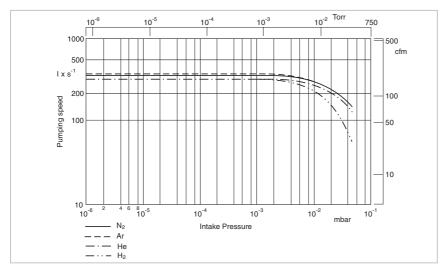
The purge gas protects only the bearing area and the motor of the TURBOVAC.

Dimensional drawing for the TURBOVAC 361 and 361 C

Typical Applications

- Leak detectors
- Mass spectrometers
- Data storage
- Optical coating
- R & D, e.g.
 - UHV systems
 - Particle accelerators
- Load locks and transfer chambers

Technical Features


- Compact design
- Operation in any orientation
- Oil-free pump for generating clean high and ultrahigh vacuum conditions

- Space-saving
- Easy to integrate into complex vacuum systems
- Low operating costs
- Highly reliable operation also in processes loaded with particles

TURBOVAC 361

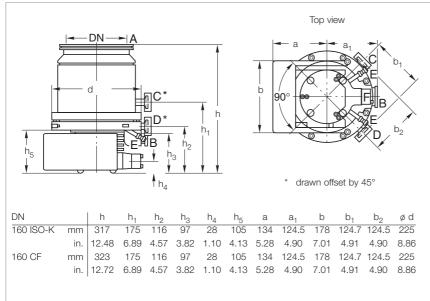
Inlet flange	DN	100 ISO-K • 100 CF	160 ISO-K • 160 CF
Pumping speed			
N_2	I x s ⁻¹	345	400
Ar	I x s ⁻¹	350	_
He	I x s ⁻¹	340	380
H ₂	I x s ⁻¹	340	370
Max. gas throughput			
N_2	mbar x I x s ⁻¹	3.0	3.0
Ar	mbar x I x s ⁻¹	2.5	2.5
Compression ratio			
N_2		1 x 10 ⁹	1 x 10 ⁹
He		6 x 10 ⁴	6 x 10 ⁴
H ₂		3 x 10 ³	3 x 10 ³
Ultimate pressure	mbar (Torr)	< 1 x 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)	< 1 x 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)
Max. continuous inlet pressur	re ¹⁾		
•	mbar (Torr)	$5 \times 10^{-2} (3.75 \times 10^{-2})$	5 x 10 ⁻² (3.75 x 10 ⁻²)
Max. foreline pressure for N ₂			
	mbar (Torr)	$5 \times 10^{-1} (3.75 \times 10^{-1})$	5 x 10 ⁻¹ (3.75 x 10 ⁻¹)
Recommended forevacuum	pump	from TRIVAC D 16 B to D 25 B	from TRIVAC D 16 B to D 25 B
Run-up time to 95% speed	min	≈ 2	≈ 2
Purge / vent port	DN	10 KF	10 KF
Cooling water connection (ho	se nozzle)		
,	mm (in.)	10 (0.39)	10 (0.39)
Weight, approx.	kg (lbs)	12 (26)	12 (26)
Max. power consumption	VA	680	680
at ultimate pressure	VA	480	480

¹⁾ Water-cooled

Pumping speed as a function of the inlet pressure (TURBOVAC 361 with flange DN 100)

TURBOVAC 361

Inlet flange	Foreline flange	Cooling method	Item	
DN 100 ISO-K	DN 25 KF	Water-cooled	TURBOVAC 361	Part No. 856 70
DN 100 ISO-K	DN 25 KF	Water-cooled	TURBOVAC 361 C	Part No. 856 75
DN 100 CF	DN 25 KF	Water-cooled	TURBOVAC 361	Part No. 856 71
DN 160 ISO-K	DN 25 KF	Water-cooled	TURBOVAC 361	Part No. 856 72
DN 160 ISO-K	DN 25 KF	Water-cooled	TURBOVAC 361 C	Part No. 856 77
DN 160 CF	DN 25 KF	Water-cooled	TURBOVAC 361	Part No. 856 73
Accessories, neo	essary for all pun	nps		
	converter TURBO.DR	IVE TD20 classic		
100 - 240 V AC (-	15%/+10%)			
without interfac	e			Part No. 800075V0001
with RS 232 C i	nterface			Part No. 800075V0002
with RS 485 C i	nterface			Part No. 800075V0004
with Profibus				Part No. 800075V0003
with 25 pol I/O				Part No. 800075V0005
with DeviceNet				Part No. 800075V0006
with Ethernet/IF	.			Part No. 800075V0007
Connecting cable TU	IRBO.DRIVE TD20 clas	^{sic} - pump		
3 m (10.5 ft)				Part No. 857 65
5 m (17.5 ft)				Part No. 857 66
10 m (35.0 ft)				Part No. 857 67
20 m (70.0 ft)				Part No. 857 68
50 m (175.0 ft)				Part No. 800152V0008
60 m (210.0 ft)				Part No. 800152V0007
Accessories, opt	ional			
Air cooling unit				
230 V AC				Part No. 855 31
110 V AC				Part No. 894 08
100 V AC				Part No. 800152V0016
Flange heater 100 CF	=			
230 V AC				Part No. 854 27
110 V AC				Part No. 854 28
Flange heater 160 CF	=			
230 V AC				Part No. 854 37
110 V AC				Part No. 854 38


Notes	

TURBOVAC 600 C ClassicLine

Typical Applications

- Load locks and transfer chambers
- Optical coating
- Flat panel displays
- R&D

Technical Features

- Compact design
- Operation in any orientation
- Oil-free pump for generating clean high and ultrahigh vacuum conditions

Dimensional drawing for the TURBOVAC 600 C

Pumping speed for different gases as a function of intake pressure (TURBOVAC 600 C with flange DN 160 ISO-K)

- Installation in any orientation
- Highly reliable due to hybrid ceramic ball bearings
- Life time lubrication and maintenance-free
 - Option: Purge gas facility

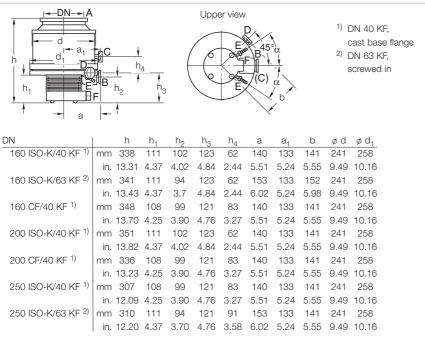
TURBOVAC 600 C

Inlet flange	DN	160 ISO-K ● 160 CF
Pumping speed		
N ₂	I x s ⁻¹	560
He	I x s ⁻¹	600
H_2	I x s ⁻¹	570
Max. gas throughput		
N_2	mbar x I x s ⁻¹	< 4
Ar	mbar x I x s ⁻¹	< 4
Compression ratio		
N_2		> 10 ⁹
He		2×10^4
H ₂		1.1 x 10 ³
Ultimate pressure	mbar (Torr)	< 10 ⁻¹⁰ (< 10 ⁻¹⁰)
Speed	min ⁻¹	36 000
Run-up time		
(frequency converter), approx.	min	4
Max. continuous inlet pressure	1)	
(continuous)	mbar (Torr)	1 x 10 ⁻² (0.75 x 10 ⁻²)
Max. foreline pressure for N ₂		
_	mbar (Torr)	$1 \times 10^{-1} (0.75 \times 10^{-1})$
Recommended forevacuum pu	ımp	
for standard operation		TRIVAC D 25 B / 40 B
for purge gas operation		TRIVAC 40 B
Run-up time to 95% speed	min	3
Purge / vent port	DN	10 KF
Cooling water connection		
(hose nozzles)	mm (in.)	10 (0.39)
Weight, approx.	kg (lbs)	17 (37.5)
Max. power consumption	VA	680
at ultimate pressure	VA	480

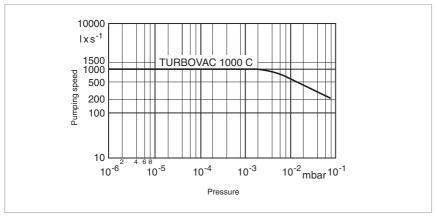
¹⁾ Water-cooled

TURBOVAC 600 C

Inlet flange	Foreline flange	Cooling method	Item		
DN 160 ISO-K	DN 40 KF	Water-cooled	TURBOVAC	600 C	Part No. 800150V0015
DN 160 CF	DN 40 KF	Water-cooled	TURBOVAC	600 C	Part No. 800150V0017
Accessories, nec	essary for all pun	nps			
Electronic frequency	converter TURBO.DR	IVE TD20 ^{classic}			
100 - 240 V AC (-	15%/+10%)				
without interfac	e				Part No. 800075V0001
with RS 232 C i	nterface				Part No. 800075V0002
with RS 485 C i	nterface				Part No. 800075V0004
with Profibus					Part No. 800075V0003
with 25 pol I/O					Part No. 800075V0005
with DeviceNet					Part No. 800075V0006
with Ethernet/IF	•				Part No. 800075V0007
Connecting cable TU	IRBO.DRIVE TD20 ^{class}	^{sic} - pump			
3 m (10.5 ft)					Part No. 857 65
5 m (17.5 ft)					Part No. 857 66
10 m (35.0 ft)					Part No. 857 67
20 m (70.0 ft)					Part No. 857 68
50 m (175.0 ft)					Part No. 800152V0008
60 m (210.0 ft)					Part No. 800152V0007
Accessories, opt	ional				
Air cooling unit					
230 V AC					Part No. 855 41
115 V AC					Part No. 170 016
100 V AC					Part No. 800152V0017
Flange heater 160 CF	=				
230 V AC					Part No. 854 37
110 V AC					Part No. 854 38


Notes	

TURBOVAC 1000 C ClassicLine



Typical Applications

- Evaporation and sputtering systems
- Metallurgy
- Research systems

Dimensional drawing for the TURBOVAC 1000 C

Pumping speed for air as a function of intake pressure (TURBOVAC 1000 C with DN 250 flange)

Technical Features

- Robust rotor design
- Operation in any orientation
- Highest pumping speed and throughput

- Installation in any orientation
- Highly reliable due to hybrid ceramic ballbearings
- Standard model: Venting flange, water cooling
- Options: Air cooling, purge gas facility

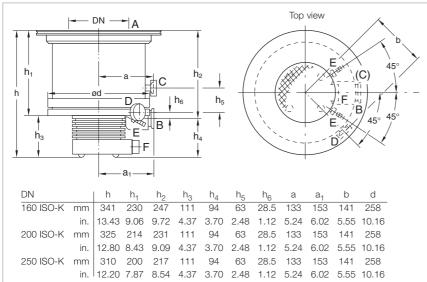
TURBOVAC 1000 C

Inlet flange Di	160 ISO-K • 160 CF	200 ISO-K • 200 CF	250 ISO-K
Pumping speed			
N ₂ Ixs	1 850	1100	1150
He I x s	880	975	1000
H ₂ Ixs	900	970	1000
Max. gas throughput			
N_2 mbar · I x s	6.5	6.5	6.5
Compression ratio			
N_2	> 10 ⁹	> 10 ⁹	> 10 ⁹
He	5 x 10 ⁴	5 x⋅ 10 ⁴	5 x 10 ⁴
H ₂	2 x 10 ³	2 x 10 ³	2 x 10 ³
Ultimate pressure mba	< 10 ⁻¹⁰	< 10 ⁻¹⁰	< 10 ⁻¹⁰
(Tor	(< 0.75 x 10 ⁻¹⁰)	(< 0.75 x 10 ⁻¹⁰)	(< 0.75 x 10 ⁻¹⁰)
Run-up time min	36 000	36 000	36 000
Run-up time			
to 95% speed, approx. mi	n 9	9	9
Max. continuous inlet pressure 1) mba	1 x 10 ⁻²	1 x 10 ⁻²	1 x 10 ⁻²
(continuous) (Tor	(0.75 x 10 ⁻²)	(0.75 x 10 ⁻²)	(0.75 x 10 ⁻²)
Type of bearing	Hybrid ceramic ball bearings	Hybrid ceramic ball bearings	Hybrid ceramic ball bearing
Type of lubrication	Fett	Fett	Fett
Installation orientation	Any	Any	Any
Cooling	Water (air)	Water (air)	Water (air)
Weight, approx. kg (lbs	25 (55.1)	25 (55.1)	25 (55.1)
Recommended backing pump			
for standard operation TRIVA	D 25 B / D 40 B	D 25 B / D 40 B	D 25 B / D 40 B
	D 40 B / D 65 B		

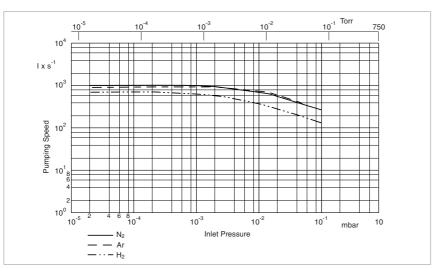
¹⁾ Water-cooled

TURBOVAC 1000 C

Inlet flange	Foreline flange	Cooling method	Interface	
DN 160 ISO-K	DN 40 KF	Water-cooled	-	Part No. 855 35
DN 160 ISO-K	DN 63 ISO-K	Water-cooled	-	Part No. 855 38
DN 200 ISO-K	DN 40 KF	Water-cooled	-	Part No. 153 00
DN 160 CF	DN 40 KF	Water-cooled	-	Part No. 854 91
DN 200 CF	DN 40 KF	Water-cooled	-	Part No. 117 64
DN 250 ISO-K	DN 40 KF	Water-cooled	-	Part No. 855 36
DN 250 ISO-K	DN 63 ISO-K	Water-cooled	_	Part No. 855 39
Accessories, nece	ssary for all pumps			
	onverter TURBO.DRIVE	TD20 ^{classic}		
100 - 240 V AC (-15 without interface	5%/+10%)			Part No. 800075V0001
with RS 232 C into	orfoco			Part No. 800075V0002
with RS 485 C into				Part No. 800075V0004
with Profibus	enace			Part No. 800075V0003
with 25 pol I/O				Part No. 800075V0005
with DeviceNet				Part No. 800075V0006
with Ethernet/IP				Part No. 800075V0007
Connecting cable TUR	BO.DRIVE TD20 ^{classic} -	pump		
3 m (10.5 ft)				Part No. 857 65
5 m (17.5 ft)				Part No. 857 66
10 m (35.0 ft)				Part No. 857 67
20 m (70.0 ft)				Part No. 857 68
50 m (175.0 ft)				Part No. 800152V0008
60 m (210.0 ft)				Part No. 800152V0007
Accessories, optio	onal			
Air cooling unit				
230 V AC				Part No. 855 41
115 V AC				Part No. 894 09
100 V AC				Part No. 800152V0017
Purge / vent valve, DN				
24 V DC; 0.6 mbar :	x I x s ⁻¹ = 36 sccm			Part No. 121 33


Notes	

TURBOVAC 1100 C ClassicLine



Typical Applications

- Data storage
- Flat panel displays
- Optical coating
- Large area coating
- R & D, e.g.
 - Fusion experiments
 - Space simulation
- Load locks and transfer chambers

Dimensional drawing for the TURBOVAC 1100 C

Pumping speed as a function of the inlet pressure (TURBOVAC 1100 C with flange DN 250)

Technical Features

- Robust rotor design
- Operation in any orientation
- Highest pumping speed and throughput
- Bearing temperature measurement through the TURBO.DRIVE TD20 classic
- Oil-free pump for generating clean high and ultrahigh vacuum conditions

- Space-saving
- Easy to integrate into complex vacuum systems
- High productivity
- Low operating costs
- Highly reliable operation also in processes loaded with particles

TURBOVAC 1100 C

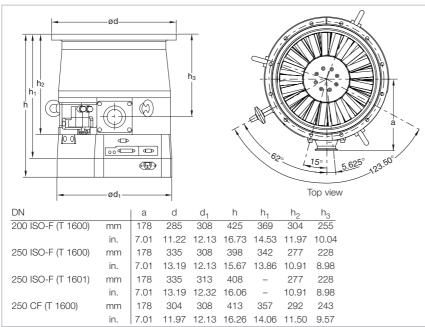
Inlet flange	DN	160 ISO-K	200 ISO-K	250 ISO-K
Pumping speed				
N_2	I x s ⁻¹	710	830	1050
Ar	I x s ⁻¹	-	760	980
He	I x s ⁻¹	-	750	850
H ₂	I x s ⁻¹	_	600	630
Max. gas throughput				
N_2	mbar x I x s ⁻¹	6.5	6.5	6.5
Ar	mbar x I x s ⁻¹	6.5	6.5	6.5
Compression ratio				
N_2		1 x 10 ⁵	1 x 10 ⁵	1 x 10 ⁵
Ar		1 x 10 ⁵	1 x 10 ⁵	1 x 10 ⁵
H ₂		1 x 10 ⁴	1 x 10 ⁴	1 x 10 ⁴
Ultimate pressure	mbar (Torr)	< 3 x 10 ⁻¹⁰ (< 2.2 x 10 ⁻¹⁰)	< 3 x 10 ⁻¹⁰ (< 2.2 x 10 ⁻¹⁰)	< 3 x 10 ⁻¹⁰ (< 2.2 x 10 ⁻¹⁰)
Max. foreline pressure for N ₂	mbar (Torr)	0.1 (0.075)	0.1 (0.075)	0.1 (0.075)
Recommended forevacuum p	ump	TRIVAC D 65 B / SCROLLVAC SC 15/30 D	TRIVAC D 65 B / SCROLLVAC SC 15/30 D	TRIVAC D 65 B / SCROLLVAC SC 15/30 D
Run-up time to 95% speed	min	9	9	9
Purge / vent port	DN	10 KF	10 KF	10 KF
Cooling water connection (hose nozzles)	mm (in.)	10 (0.39)	10 (0.39)	10 (0.39)
(11036 11022163)	111111 (111.)	10 (0.09)	10 (0.39)	10 (0.39)
Weight, approx.	kg (lbs)	22 (48)	22 (48)	22 (48)
Supply voltage	V AC	42	42	42
Max. power consumption	VA	400	400	400

TURBOVAC 1100 C

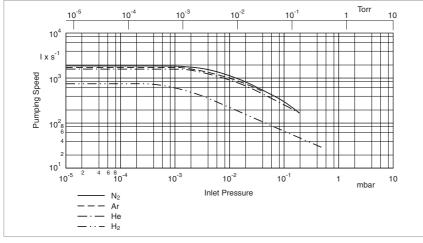
Inlet flange	Foreline flange	Cooling method	Interface	
DN 160 ISO-K	DN 63 ISO-K	Water-cooled	-	Part No. 800150V0030
DN 200 ISO-K	DN 63 ISO-K	Water-cooled	-	Part No. 800150V0031
DN 250 ISO-K	DN 63 ISO-K	Water-cooled	-	Part No. 800150V0032
Accessories, neces	ssary for all pumps			
Electronic frequency co	nverter TURBO.DRIVE	TD20 ^{classic}		
100 - 240 V AC (-15	%/+10%)			
without interface				Part No. 800075V0001
with RS 232 C inte	erface			Part No. 800075V0002
with RS 485 C inte	erface			Part No. 800075V0004
with Profibus				Part No. 800075V0003
with 25 pol I/O				Part No. 800075V0005
with DeviceNet				Part No. 800075V0006
with Ethernet/IP				Part No. 800075V0007
Connecting cable TURE	3O.DRIVE TD20 classic -	pump		
3 m (10.5 ft)				Part No. 857 65
5 m (17.5 ft)				Part No. 857 66
10 m (35.0 ft)				Part No. 857 67
20 m (70.0 ft)				Part No. 857 68
50 m (175.0 ft)				Part No. 800152V0008
60 m (210.0 ft)				Part No. 800152V0007
Accessories, option	nal			
Purge / vent valve, DN 1	16 KF			
24 V DC; 0.6 mbar x	1 x s ⁻¹ = 36 sccm			Part No. 121 33

Note: The TURBO.GUARD 3 system is no longer available for these part numbers and is not supported by the TURBO.DRIVE TD20 classic.

Note for the North and South American Continents: For special application we recommend the TURBOVAC 1000 C. Please contact your sale office


Notes	

TURBOVAC T 1600 / T 1601



Typical Applications

- Data storage
- Flat panel displays
- Optical coating
- Large area coating
- R & D, e.g.
 - Fusion experiments
 - Space simulation

Dimensional drawing for the TURBOVAC T 1600

Pumping speed as a function of the inlet pressure (TURBOVAC T 1600 with flange DN 250)

Technical Features

- Frequency converter and power supply integrated
- Robust rotor design
- Operation in any orientation
- Highest pumping speed and throughput
- Oil-free pump for generating clean high and ultrahigh vacuum conditions
- Purge gas and venting valve integrated
- For special outside influences (only T 1601)

- Space-saving
- Easy to integrate into complex vacuum systems
- High productivity
- Low operating costs
- Highly reliable operation also in processes loaded with particles

TURBOVAC T 1600 / T 1601

Inlet flange	DN	200 ISO-F	250 ISO-F • 250 CF
Pumping speed			
N_2	I x s ⁻¹	1100	1550
Ar	I x s ⁻¹	960	1410
He	I x s ⁻¹	1150	1300
H ₂	I x s ⁻¹	690	720
Max. gas throughput			
N_2	mbar x I x s ⁻¹	30	30
Ar	mbar x I x s ⁻¹	20	20
He	mbar x I x s ⁻¹	30	30
H ₂	mbar x I x s ⁻¹	20	20
Compression ratio			
N_2		5 x 10 ⁵	5 x 10 ⁵
Ar		1 x 10 ⁶	1 x 10 ⁶
He		1 x 10 ⁴	1 x 10 ⁴
H ₂		2 x 10 ²	2 x 10 ²
Ultimate pressure	mbar (Torr)	< 3 x 10 ⁻¹⁰ (< 2.2 x 10 ⁻¹⁰)	< 3 x 10 ⁻¹⁰ (< 2.2 x 10 ⁻¹⁰)
Max. foreline pressure for N ₂	mbar (Torr)	0.5 (0.375)	0.5 (0.375)
Recommended forevacuum p	oump	TRIVAC D 65 B + RUVAC WA 501	TRIVAC D 65 B + RUVAC WA 501
(alternatively)		TRIVAC D 65 B	TRIVAC D 65 B
		SCROLLVAC SC 15/30 D	SCROLLVAC SC 15/30 D
Run-up time to 95% speed	min	< 10	< 10
Purge / vent port	DN	G 1/4"	G 1/4"
Cooling water connection		G 3/8"	G 3/8"
Weight, approx.	kg (lbs)	40 (88)	40 (88)
Supply voltage	V	100 - 240	100 - 240
Max. power consumption	VA	700	700

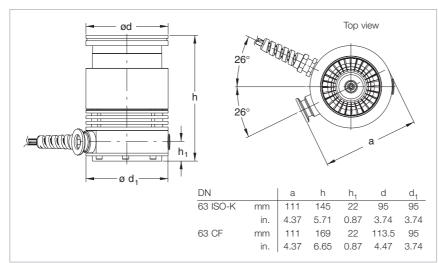
Ordering Information

TURBOVAC T 1600

Inlet flange	Foreline flange	Cooling method	Interface	
DN 200 ISO-F	DN 40 KF	Water-cooled	_	Part No. 800040V1144
DN 200 ISO-F	DN 40 KF	Water-cooled	Profibus	Part No. 800040V2144
DN 250 ISO-F	DN 40 KF	Water-cooled	_	Part No. 800040V1444
DN 250 ISO-F	DN 40 KF	Water-cooled	Profibus	Part No. 800040V2444
DN 250 ISO-F	DN 63 ISO-K	Water-cooled	_	Part No. 800040V1544
DN 250 CF	DN 40 KF	Water-cooled	_	Part No. 800040V1844
DN 250 CF	DN 40 KF	Water-cooled	Profibus	Part No. 800040V2844
Purge filter		Part No. 200 18 515		
Accessories for RS 232	C and RS 485 C interfa	see chapter "Turbomolecular Pumps" para. "Accessories"		

Ordering Information

TURBOVAC T 1601


Inlet flange Foreline flange DN 250 ISO-F DN 40 KF		Cooling method Water-cooled	Interface Profibus	Part No. 800040V4444
Accessories for RS 232 (C and RS 485 C interfa	ces		see chapter "Turbomolecular Pumps", para. "Accessories"

Mechanical Rotor Suspension with Compound Stage TURBOVAC TW 70 H

Typical Applications

- Mass spectrometers
- Electron beam microscopy
- Leak detectors
- R & D, e.g.
 - UHV systems
- Load locks and transfer chambers

Dimensional drawing for the TURBOVAC TW 70 H

10⁰ Torr I x s⁻¹ 10⁻³ 10⁻² 10⁻¹ mbar Inlet Pressure

Pumping speed as a function of the inlet pressure

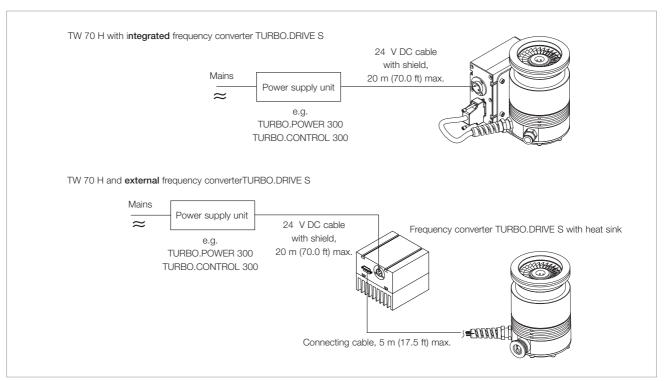
Technical Features

- Integrated or external frequency con-
- Compact design
- Operation in any orientation
- High foreline tolerance
- Oil-free pump for generating clean high and ultrahigh vacuum conditions

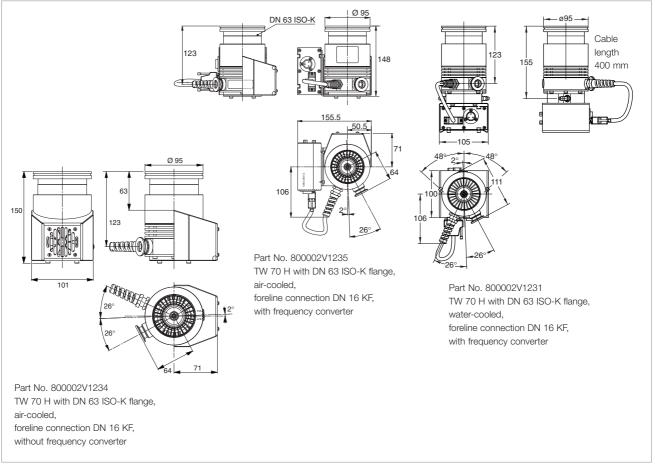
- Space-saving
- Easy to integrate into complex vacuum systems
- Allows the use of down-sized forevacuum pumps
- Low operating costs
- Highly reliable operation

TURBOVAC TW 70 H

	O-ring sealed	Metal sealed
Inlet flange DN	63 ISO-K	63 CF
Pump housing	Aluminum	Stainless steel
Pumping speed at 10 ⁻⁵ / 10 ⁻³ mbar		
N ₂ I x s ⁻¹	60 / 56	60 / 56
Ar I x s ⁻¹	56 / 54	56 / 54
H ₂ I x s ⁻¹	40 / 38	40 / 38
He I x s ⁻¹	52 / 50	52 / 50
∕lax. gas throughput ¹⁾ at 10 ⁻¹ mbar		
N ₂ mbar x I x s ⁻¹	1.9	1.9
Ar mbar x I x s ⁻¹	2.4	2.4
H ₂ mbar x I x s ⁻¹	1.3	1.3
He mbar x I x s ⁻¹	1.9	1.9
Max. compression when idle		
N_2	1 x 10 ⁸ at 14 mbar	1 x 10 ¹⁰ at 10 mbar
Ar	1 x 10 ⁷ at 14 mbar	
H ₂	4×10^3 at 0.2 mbar	
He	2×10^5 at 2 mbar	
Ultimate pressure		
with two-stage oil-sealed		
rotary vane vacuum pump		
TRIVAC D 2,5 E mbar (Torr)	< 5 x 10 ⁻⁸ (< 3.75 x 10 ⁻⁸)	< 2 x 10 ⁻¹⁰ (< 1.5 x 10 ⁻¹⁰)
with dry compressing		
scroll vacuum pump		
SCROLLVAC SC 5 D mbar (Torr)		< 1 x 10 ⁻⁹ (< 0.75 x 10 ⁻⁹)
with diaphragm pump		,
DIVAC 0.8 T mbar (Torr)		< 5 x 10 ⁻⁹ (< 3.75 x 10 ⁻⁹)
Max. foreline pressure for N ₂ mbar (Torr)	20 (15)	20 (15)
Recommended forevacuum pump		
two-stage oil-sealed		
rotary vane vacuum pump	TRIVAC D 2,5 E	TRIVAC D 2,5 E
diaphragm pump	DIVAC 0,8 T	DIVAC 0,8 T
oil-free scroll vacuum pump	SC 5 D	SC 5 D
Run-up time to 95%		
of nominal speed min	1.5	1.5
Cooling water connection (option)	2 x G 1/8"	2 x G 1/8"
Weight, approx. with / without		
frequency converter kg (lbs)	3.0 (6.62) / 2.3 (5.08)	3.0 (6.62) / 2.3 (5.08)
Supply voltage V DC	24	24
Max. power consumption		
Run up / ultimate pressure W	150 / 30	150 / 30


¹⁾ for continuous operation when water-cooled

Ordering Information


TURBOVAC TW 70 H

Accessories for seria	ıl interfaces RS 232 C and I	RS 485 C		see chapter "Turbomolecular Pumps",
DN 63 ISO-K DN 63 CF				Part No. 500 070
Vibration absorber DN 63 ISO-K				Part No. 800131V0063
DN 63 CF (fine)				Part No. 887 20
DN 63 CF (course)			Part No. 200 17 171
DN 63 ISO-K (cou	rse)			Part No. 200 17 170
Splinter guard				
110 V, 60 Hz				Part No. 854 07
230 V, 50 Hz				Part No. 854 04
Flange heater 63 CF		-		
Air cooling unit (uses	V DC from pump connecti	on)		Part No. 800136V0001
2 gaskets (copper				Part No. 800135V0001
-	nozzles G 1/8", OD 8 mm fo	or water hose.		
	ith 2 x G 1/8" connection			
Accessories, opt	ional			
13.123.0011110	_ 000			para. "Electronic Frequency Converters'
TURBO.POWER 3				with Mechanical Rotor Suspension",
Power supplies	200			see chapter "Turbomolecular Pumps
	ioi manuai operation of the	- tarbornolecular puri	ıμ	1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
	for manual operation of the	a turbomologular sus	nn.	Part No. 152 48
, ,	cessary for all pumps			
5 m (17.5 ft)				Part No. 864 50
3 m (10.5 ft)				Part No. 864 40
onnecting cable (1)	JRBO.DRIVE S - pump)			Part No. 152 47
RS 232 C inter				Part No. 800070V0005
RS 485 C inter	•	L 5 with fieat Silik		Part No. 800070V0006
- ·	equency converter TURBO. ncy converter TURBO.DRIV		у	
			.,	
DN 63 CF	DN 16 KF	Convection	_	Part No. 800002V2934
DN 63 ISO-K	Camozzi coupling ¹⁾	Convection	_	Part No. 800002V1914
DN 63 ISO-K DN 63 ISO-K	DN 16 KF DN 16 KF	Convection Air-cooled	- -	Part No. 800002V1934
Inlet flange	Foreline flange	Cooling method	Interface	Part No. 800002V1934
	frequency converter			
			110 400 0	
DN 63 CF	DN 16 KF	Water-cooled	RS 485 C	Part No. 800002V2435
DN 63 ISO-K	DN 16 KF	Air-cooled	RS 232 C	Part No. 800002V2236
DN 63 ISO-K DN 63 ISO-K	Camozzi coupling ¹⁾ Camozzi coupling ¹⁾	Air-cooled Water-cooled	RS 485 C RS 485 C	Part No. 800002V1215
DN 63 ISO-K	DN 16 KF	Water-cooled	RS 485 C	Part No. 800002V1435
DN 63 ISO-K	DN 16 KF	Air-cooled	RS 232 C	Part No. 800002V1236 Part No. 800002V1435
DN 63 ISO-K	DN 16 KF	Air-cooled	RS 485 C	Part No. 800002V1235
	Foreline flange	Cooling method	Interface	

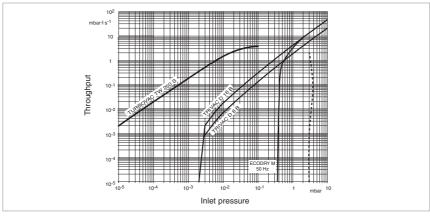
¹⁾ Quick coupling for plastic vacuum hoses with an OD of 10 mm. We recommend polyamide hoses

The modular concept

Selected dimensional drawings for the TURBOVAC TW 70 H versions

TURBOVAC TW 250 S

Typical Applications


- Analytical instruments
- Coating
- R&D

		b	b ₁	d	d ₁	h	Upper view
DN 100 ISO-K	mm	20	22	160	146.6	175	7,5
	in.	0.79	0.87	6.29	5.77	6.89	100
DN 100 CF	mm	20	22	160	146.6	175	120%
	in.	0.79	0.87	6.29	5.77	6.89	
		h ₁	h ₂	h ₃	h_4	h ₅	8041
DN 100 ISO-K	mm	37	14	4	20	40	M4
	in.	1.46	0.55	0.16	0.79	1.57	DN-
DN 100 CF	mm	37	14	4	20	40	1
	in.	1.46	0.55	0.16	0.79	1.57	
							h
							h ₁ 1

Technical Features

- Integrated or external frequency converter
- Compact design
- Efficient air-cooling system integrated

Dimensional drawing for the TURBOVAC TW 250 S without frequency converter

Operation diagram for nitrogen for TURBOVAC TW 250 S

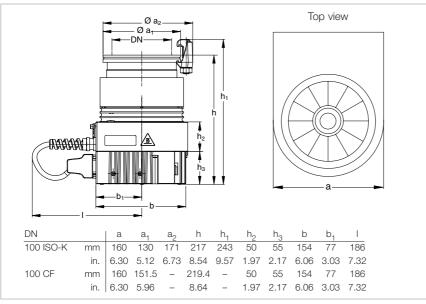
- Highest pumping speed and throughput for N_2 and Ar
- Highest reliability in operation

TURBOVAC TW 250 S

Inlet flange	DN	100 ISO-K / 100 CF		
Pumping speed at 10 ⁻⁵ mbar				
N ₂	x s ⁻¹	230		
	x s ⁻¹	210		
H ₂	x s ⁻¹	80		
He	x s ⁻¹	150		
Max. gas throughput, max.				
N_2		3.7 mbar x I x s ⁻¹ at 10^{-1} mbar		
Ar		1.6 mbar x I x s ⁻¹ at 10^{-2} mbar		
H ₂		1.1 mbar x l x s ⁻¹ at 10^{-1} mbar		
He		2.4 mbar x I x s^{-1} at 10^{-1} mbar		
Compression ratio				
N_2		3.0 x 10 ⁷ at 3 mbar		
Ar		1.0 x 10 ⁷ at 6 mbar		
H_2		5.0×10^2 at 0.2 mbar		
Не		3.2×10^3 at 0.7 mbar		
Ultimate pressure with two-stage oil-sea	aled			
rotary vane pump mbar	(Torr)	< 2 x 10 ⁻⁸ (< 1.5 x 10 ⁻²)		
Max. permissible backing pressure				
for N ₂ mbar	(Torr)	3 (2.25)		
Operating speed min ⁻¹	(rpm)	51.600		
Run-up time, approx.	min	3		
Forevacuum connection		DN 16 KF		
Venting connection		Thread M 5		
Weight				
	g (lbs)	5.0 (11.0)		
with frequency converter ko	g (lbs)	5.8 (12.6)		
Recommended forevacuum pumps				
TRIVAC		D 2.5 E		
Diaphragm pump				
with an ultimate pressure < 3 mb	ar			
and a pumping speed at 3 mbar		upon request		
TRIVAC (at purge gas operation)		D 8 B		

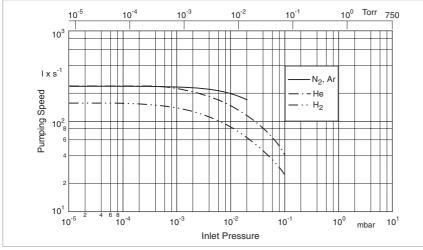
TURBOVAC TW 250 S

Inlet flange	Cooling method	Splinter guard	Frequency converter	
DN 100 ISO-K	Water-cooled	- -	TDS / PB	Part No. 114 37
DN 100 ISO-K	Water-cooled	Course	TDS / PB	Part No. 800150V0016
DN 100 ISO-K	Air-cooled	Course	TDS / PB	Part No. 800150V0009
DN 100 ISO-K	Air-cooled	_	TDS / RS 232 C	Part No. 800150V0011
DN 100 ISO-K	Air-cooled	_	TDS / RS 485 C	Part No. 800150V0013
DN 100 CF	Air-cooled	_	TDS / RS 232 C	Part No. 800150V0012
DN 100 CF	Air-cooled	_	TDS / RS 485 C	Part No. 800150V0014
	250 S without inte	arated frequenc		
Inlet flange	Cooling method	Splinter guard	Frequency converter	
DN 100 ISO-K	Air-cooled	Course	-	Part No. 113 52
DN 100 ISO-K	Air-cooled	Course	_	Part No. 800150V0007
•		•		Part No. 800070V0003 Part No. 800070V0002
Connecting cable T 1 m (3.5 ft)	TDS – pump			Part No. 152 47
Power supplies				see chapter
TURBO.POWER	300			"Turbomolecular Pumps
TURBO.CONTRO				with Mechanical Rotor Suspension",
. 555.55141110	500			para. "Electronic Frequency Converters
Accessories, ne	cessary for all pun	nps		
Venting valve mount		-10-0		Part No. 863 20
Power failure ventin	g valve			
220/240 V AC				Part No. 280 71
24 V AC				Part No. 280 85
Venting valve				
220/240 V AC				Part No. 280 70
110/120 V AC				Part No. 280 72
24 V AC				Part No. 280 73
24 V DC				Part No. 280 74
Accessories, op	tional			
-	vith 2x G 1/8" connection nozzles G 1/8", OD 10			Part No. 800135V0002
	s V DC from pump con	nection)		Part No. 800 000 249
Flange heater				
100 CF, 230 V, 50) Hz			Part No. 854 27
100 CF, 110 V, 60				Part No. 854 28
Splinter guard				
DN 100 ISO-K/CI	F			
coarse (3.2 x	3.2 mm (0.13 x 0.13 in.))		Part No. 800132V0101
•	mm (0.06 x 0.06 in.))			Part No. 800132V0102
DN 160 ISO-K	. "	Part No. 200 00 307		
DN 160 CF				Part No. 200 17 247
Vibration absorber				
DN 100 ISO-K				Part No. 800131V0100
DN 100 CF				Part No. 500 071
DN 160 ISO-K				Part No. 500 073
DN 160 CF				Part No. 500 072
Accessories for seri	al interfaces RS 232 C	and RS 485 C		see chapter "Turbomolecular Pumps",


Notes	

TURBOVAC TW 290 H

Typical Applications


- Mass spectrometers
- R & D, e.g.
 - UHV systems
 - Particle accelerators
- Load locks and transfer chambers

Technical Features

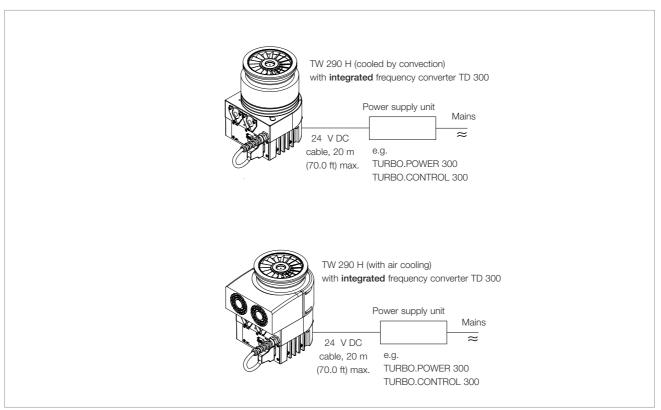
- Integrated frequency converter
- Compact design
- Operation in any orientation
- High pumping speed and compression for light gases
- Highly effective air-cooling unit
- Oil-free pump for generating clean high and ultrahigh vacuum conditions

Dimensional drawing for the TURBOVAC TW 290 H

Pumping speed as a function of the inlet pressure

- Space-saving
- Easy to integrate into complex vacuum systems
- High foreline tolerance allows the use of down-sized forevacuum pumps
- Low operating costs

TURBOVAC TW 290 H

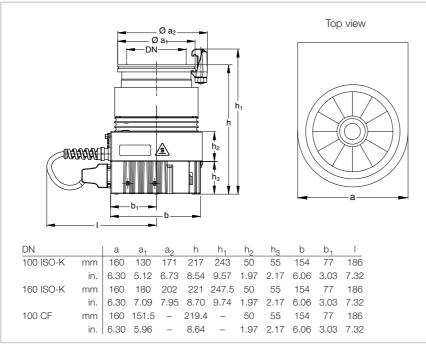

	O-ring sealed	Metal sealed
Inlet flange DN	100 ISO-K	100 CF
Pump housing	Aluminum	Stainless steel
Pumping speed at 10 ⁻⁵ / 10 ⁻³ mbar		
N_2 I x s ⁻¹	240 / 240	240 / 240
Ar I x s ⁻¹	240 / 240	240 / 240
H ₂ I x s ⁻¹	160 / 140	160 / 140
He I x s ⁻¹	240 / 230	240 / 230
Ultimate pressure (for CF pumps)		
with two-stage oil-sealed		
rotary vane vacuum pump		
TRIVAC D 2,5 E mbar (Torr)	< 1 x 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	$< 1 \times 10^{-10} (< 0.75 \times 10^{-10})$
with dry compressing		
scroll vacuum pump		
SCROLLVAC SC 15 D mbar (Torr)		< 1 x 10 ⁻⁹ (< 0.75 x 10 ⁻⁹)
with diaphragm pump		
DIVAC 2.5 VT mbar (Torr)		< 1 x 10 ⁻⁹ (< 0.75 x 10 ⁻⁹)
Max. foreline pressure for N ₂ ¹⁾ mbar (Torr)	< 6	< 6
Recommended forevacuum pump		
two-stage oil-sealed		
rotary vane vacuum pump	TRIVAC D 2,5 E	TRIVAC D 2,5 E
dry compressing scroll vacuum pump	SCROLLVAC SC 15 D	SCROLLVAC SC 15 D
Run-up time to 95%		
of nominal speed min	4	4
Purge / vent port DN	16 KF	16 KF
Cooling water connection (option)	2x G 1/8"	2x G 1/8"
Weight, approx. with / without		
frequency converter kg (lbs)	6.8 (15.0) / 6.0 (13.2)	6.8 (15.0) / 6.0 (13.2)
Supply voltage V DC	24	24
Max. power consumption		
Run up / ultimate pressure W	150 / 30	150 / 30

¹⁾ water-cooled

Ordering Information

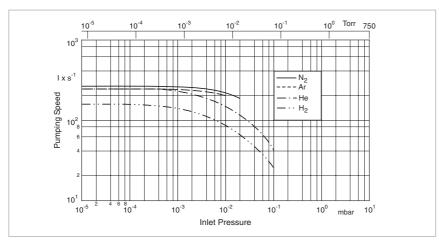
TURBOVAC TW 290 H

TW 290 H with in	tegrated frequen	cy converter TD 30	0	
Inlet flange	Foreline flange	Cooling method	Interface	
DN 100 ISO-K	DN 16 KF	Convection	RS 485 C	Part No. 800170V3003
DN 100 CF	DN 16 KF	Convection	RS 485 C	Part No. 800170V3004
TW 290 H withou	t frequency conv	erter TD 300		
Inlet flange	Foreline flange	Cooling method	Interface	
DN 100 ISO-K	DN 16 KF	Convection	-	Part No. 800170V3001
DN 100 CF	DN 16 KF	Convection	_	Part No. 800170V3002
Accessories, nec	essary for all pun	nps		
START/STOP switch f	for manual operation	of the turbomolecular p	ump	Part No. 152 48
Power supplies				see chapter "Turbo-
TURBO.POWER 30	00			molecular Pumps with Mechanical
TURBO.CONTROL	. 300			Rotor Suspension", para. "Electronic Frequency Converters"
Accessories, opti	ional			
Water cooling unit wit	th G 1/8" connection			Part No. 800135V0002
including 2 hose n	ozzles G 1/8", OD 10	mm for water hose,		
4 gaskets, 2 blank	-off plugs			
Air cooling unit (uses	V DC from pump con	inection)		Part No. 800 000 249
Flange heater				
100 CF, 230 V, 50 H	Hz			Part No. 854 27
100 CF, 110 V, 60 F	Hz			Part No. 854 28
Splinter guard DN 100	0 ISO-K/CF			
coarse (3.2 x 3.2 n	nm (0.13 x 0.13 in.))			Part No. 800132V0101
fine (1.6 x 1.6 mm	(0.06 x 0.06 in.))	Part No. 800132V0102		
Vibration absorber				
DN 100 ISO-K				Part No. 800131V0100
DN 100 CF				Part No. 500 071
Accessories for serial	I interfaces RS 232 C	see chapter "Turbomolecular Pumps", para. "Accessories"		


The modular concept

TURBOVAC TW 300

Typical Applications


- Mass spectrometers
- Production of thin films
- CD and DVD coating
- R & D, e.g.
 - UHV systems
 - Particle accelerators
- Load locks and transfer chambers

Technical Features

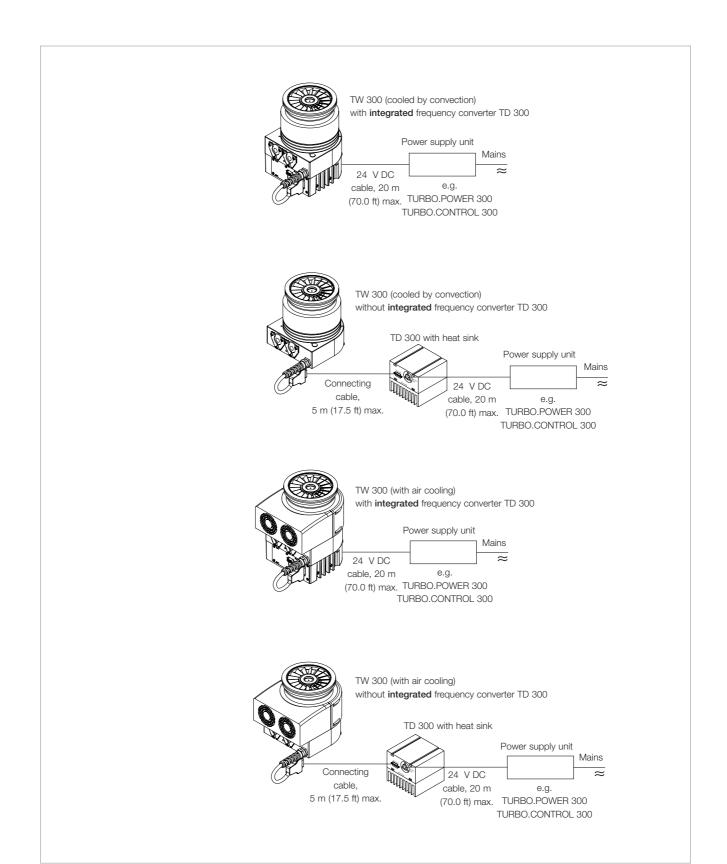
- Integrated or external frequency converter
- Compact design
- Operation in any orientation
- Highest pumping speed for Nitrogen and Argon
- Highly effective air-cooling unit
- Oil-free pump for generating clean high and ultrahigh vacuum conditions

Dimensional drawing for the TURBOVAC TW 300

Pumping speed as a function of the inlet pressure

- Space-saving
- Easy to integrate into complex vacuum systems
- High foreline tolerance allows the use of down-sized forevacuum pumps
- High productivity
- Low operating costs

TURBOVAC TW 300

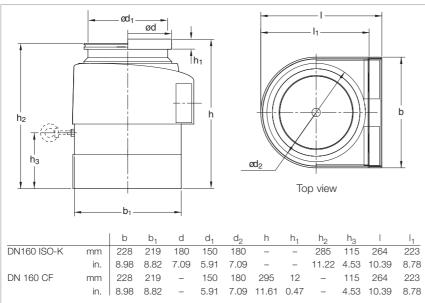

	O-ring sealed	O-ring sealed	Metal sealed
Inlet flange D	N 100 ISO-K	160 ISO-K	100 CF
Pump housing	Aluminum	Aluminum	Stainless steel
Pumping speed ¹⁾ at 10 ⁻⁵ / 10 ⁻³ mbar			
N ₂ Ixs	240 / 240	240 / 240	240 / 240
Ar I x s	230 / 230	230 / 230	230 / 230
H ₂ Ixs	140 / 125	140 / 125	140 / 125
He I x s	-1 230 / 220	230 / 220	230 / 220
Ultimate pressure (for CF pumps)			
with two-stage oil-sealed			
rotary vane vacuum pump			
TRIVAC D 2,5 E mbar (Toi	r) < 2 x 10 ⁻⁸ (< 1.5 x 10 ⁻⁸)	< 2 x 10 ⁻⁸ (< 1.5 x 10 ⁻⁸)	< 2 x 10 ⁻¹⁰ (< 1.5 x 10 ⁻¹⁰)
with dry compressing			
scroll vacuum pump			
SCROLLVAC SC 15 D mbar (Tor	r)		< 1 x 10 ⁻⁹ (< 0.75 x 10 ⁻⁹)
with diaphragm pump			00
DIVAC 2.5 VT mbar (To	r)		< 4 x 10 ⁻⁹ (< 3 x 10 ⁻⁹)
$\mbox{Max. foreline pressure for N}_2 \qquad mbar (Torsion of the context of t$	r) < 10 (water-cooled)	< 10 (water-cooled)	< 5 (air-cooled)
Recommended forevacuum pump			
two-stage oil-sealed			
rotary vane vacuum pump	TRIVAC D 2,5 E	TRIVAC D 2,5 E	TRIVAC D 2,5 E
dry compressing scroll vacuum pump	SCROLLVAC SC 15 D	SCROLLVAC SC 15 D	SCROLLVAC SC 15 D
Run-up time to 95%			
of nominal speed m	n 4	4	4
Purge / vent port D	N 16 KF	16 KF	16 KF
Cooling water connection (option)	2x G 1/8"	2x G 1/8"	2x G 1/8"
Weight, approx. with / without			
frequency converter kg (lb	6.8 (15.0) / 6.0 (13.2)	6.8 (15.0) / 6.0 (13.2)	6.8 (15.0) / 6.0 (13.2)
Supply voltage V D	C 24	24	24
Max. power consumption			
	N 150 / 30	150 / 30	150 / 30
· · · · · · · · · · · · · · · · · · ·	1	1	1

¹⁾ for continuous operation when water-cooled

Ordering Information

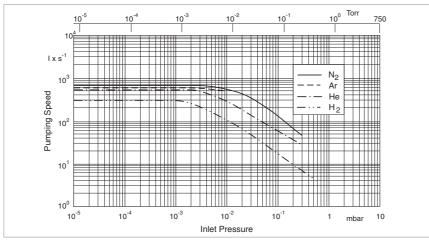
TURBOVAC TW 300

Inlet flange DN 100 ISO-K	Foreline flange DN 16 KF	Cooling method Water-cooled	Interface RS 232/422 C	Part No. 800170V2106
	frequency convert			
Inlet flange	Foreline flange	Cooling method	Interface	
DN 100 ISO-K	DN 16 KF	Convection	-	Part No. 800170V2101
DN 100 ISO-K	DN 16 KF	Air-cooled	-	Part No. 800011V0003
				Part No. 800072V0004 Part No. 800072V0003 Part No. 800072V0001
WILII NO 232/42	2 C interface			1 211 110. 00007240001
Connecting cable TD	300 – pump			Dort No. 450 47
1 m (3.5 ft)				Part No. 152 47 Part No. 864 40
3 m (10.5 ft)				Part No. 864 40
5 m (17.5 ft)				Part No. 504 50
•	essary for all pun	•		
START/STOP switch	for manual operation	Part No. 152 48		
Power supplies				see chapter
TURBO.POWER 300				"Turbomolecular Pumps
TURBO.CONTROL 300				with Mechanical Rotor Suspension",
				para. "Electronic Frequency Converters"
Accessories, opt	ional			
Water cooling unit wi	ith 2x G 1/8" connection	on		Part No. 800135V0002
including 2 hose r	nozzles G 1/8", OD 10	mm for water hose,		
4 gaskets, 2 blank	c-off plugs			
Air cooling unit (uses	V DC from pump con	Part No. 800 000 249		
Flange heater				
100 CF, 230 V, 50	Hz			Part No. 854 27
100 CF, 110 V, 60	Hz			Part No. 854 28
Splinter guard				
DN 100 ISO-K/CF				
coarse (3.2 x 3	.2 mm (0.13 x 0.13 in.))		Part No. 800132V0101
fine (1.6 x 1.6 r	mm (0.06 x 0.06 in.))			Part No. 800132V0102
DN 160 ISO-K				Part No. 200 00 307
DN 160 CF				Part No. 200 17 247
Vibration absorber				
DN 100 ISO-K				Part No. 800131V0100
DN 100 CF				Part No. 500 071
DN 160 ISO-K				Part No. 500 073
DN 160 CF				Part No. 500 072
Accessing for comin	Il interfaces RS 232 C	and BS 485 C		see chapter "Turbomolecular Pumps",


The modular concept

TURBOVAC TW 701

Typical Applications


- Mass spectrometers
- Data storage
- Flat panel displays
- R & D, e.g.
 - UHV systems
 - Particle accelerators
- Load locks and transfer chambers

Technical Features

- Integrated frequency converter
- Operation in any orientation
- Highest pumping speed and throughput für Nitrogen und Argon
- High foreline tolerance allows the use of down-sized forevacuum pumps
- Highly effective air-cooling unit
- Oil-free pump for generating clean high and ultrahigh vacuum conditions

Dimensional drawing for the TURBOVAC TW 701

Pumping speed as a function of the inlet pressure

- Space-saving
- Easy to integrate into complex vacuum systems
- High productivity
- Low operating costs
- Highly reliable operation

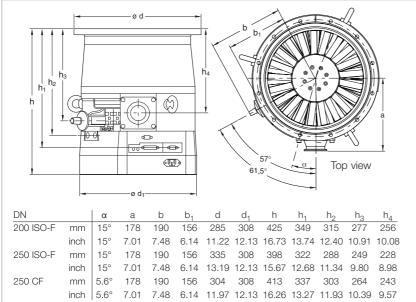
TURBOVAC TW 701

Inlet flange	DN	160 ISO-K	160 CF
Pumping speed			
N_2 I x s ⁻¹		680	680
Ar I x s ⁻¹		600	600
He	I x s ⁻¹	530	530
H ₂	I x s ⁻¹	330	330
Max. gas throughput			
N_2	mbar x I x s ⁻¹	12	12
Ar	mbar x I x s ⁻¹	5 (water-cooled)	5 (water-cooled)
He	mbar x I x s ⁻¹	7	7
H ₂	mbar x I x s ⁻¹	2.5	2.5
Compression ratio			
N_2		8 x 10 ⁸	8 x 10 ⁸
Ar		1 x 10 ⁸	1 x 10 ⁸
He		1 x 10 ⁶	1 x 10 ⁶
H ₂		2 x 10 ⁴	2 x 10 ⁴
Ultimate pressure	mbar (Torr)	< 5.0 x 10 ⁻⁹ (< 3.75 x 10 ⁻⁹)	< 1.5 x 10 ⁻¹⁰ (< 1.1 x 10 ⁻¹⁰)
Max. foreline pressure for N ₂	mbar (Torr)	14 (10.5)	14 (10.5)
Recommended forevacuum p	oump	TRIVAC D 65 B	TRIVAC D 65 B
		SCROLLVAC SC 30 D	SCROLLVAC SC 30 D
Run-up time to 95% speed	min	≈ 5	≈ 5
Purge port	DN	16 KF	16 KF
Cooling water connection		2x G 1/8" (internal threads)	2x G 1/8" (internal threads)
Weight, approx.	kg (lbs)	19 (42)	19 (42)
Supply voltage, nominal	V DC	59	59
Max. power consumption	W	500	500

Ordering Information

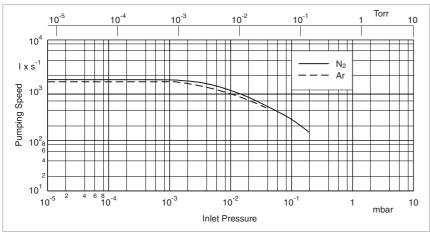
TURBOVAC TW 701

	grated frequency			
Inlet flange	Foreline flange	Cooling method	Interface	
DN 160 ISO-K	DN 25 KF	Air-cooled	RS 232 C	Part No. 800051V0121
DN 160 ISO-K	DN 25 KF	Water-cooled	RS 232 C	Part No. 800051V0025
DN 160 ISO-K	DN 25 KF	Air-cooled	RS 485 C	Part No. 800051V0024
DN 160 ISO-K	DN 25 KF	Water-cooled	RS 485 C	Part No. 800051V0023
DN 160 ISO-K	DN 25 KF	Water-cooled	Profibus	Part No. 800051V0122
DN 160 CF	DN 25 KF	Air-cooled	RS 485 C	Part No. 800051V0027
DN 160 CF	DN 25 KF	Water-cooled	RS 485 C	Part No. 800051V0026
DN 200 CF	DN 25 KF	Water-cooled	RS 232 C	Part No. 800051V0022
(incl. splinter guar	d)			
Power supply unit TU	JRBO.CONTROL 700			see chapter
				"Turbomolecular Pumps
				with Mechanical Rotor Suspension",
				para. "Electronic Frequency Converters"
Accessories, opt	ional			
Splinter guard				
DN 160 ISO-K				Part No. 200 00 307
DN 160 CF				Part No. 200 17 247
Flange heater 160 CF	=			
230 V AC				Part No. 854 37
110 V AC		Part No. 854 38		
Vibration absorber				
DN 160 ISO-K				Part No. 500 073
DN 160 CF				Part No. 500 072
OEM power supply, 5	9 V DC			Part No. 864 45
59 V DC cable				
3 m (10.5 ft)				Part No. 200 12 729
5 m (17.5 ft)				Part No. 200 12 730
10 m (35.0 ft)				Part No. 200 12 731
20 m (70.0 ft)				Part No. 200 15 064
Plug with integrated	START/STOP switch			Part No. 152 48
	-	6 mbar x I x $s^{-1} = 36 sc$	cm	Part No. 121 33
(purge gas pressure,	aus.; 1.5 to 6 bar)			
Accessories for seria	l interfaces RS 232 C	see chapter "Turbomolecular Pumps", para. "Accessories"		
Accessories, for	the water connec	etion		
Adaptor G (BPS) 1/8"	- G (BPS) 1/4" pipe			Part No. 200 91 671 (2x required)
Gasket				Part No. 224 01 207 (2x required)
Adaptor G (BPS) 1/8"	– 10 mm (0.39 in.) h	ose nozzle		Part No. 200 18 366 (2x required)
Gasket				Part No. 230 02 106 (2x required)
Adaptor G (BPS) 1/8"	' – NPT 1/8"			Part No. 200 12 742 (2x required)
Gasket				Part No. 238 20 110 (2x required)


Notes	

TURBOVAC TW 1600

Typical Applications


- Data storage
- Flat panel displays
- Optical coating
- Large area coating
- R & D, e.g.
 - Fusions-Experimente
 - Space simulation
 - UHV applications

Technical Features

- Frequency converter and power supply integrated
- Robust rotor design
- Operation in any orientation
- Highest pumping speed and throughput
- Oil-free pump for generating clean high and ultrahigh vacuum conditions
- Purge gas and venting valve integrated
- High foreline tolerance

Dimensional drawing for the TURBOVAC TW 1600

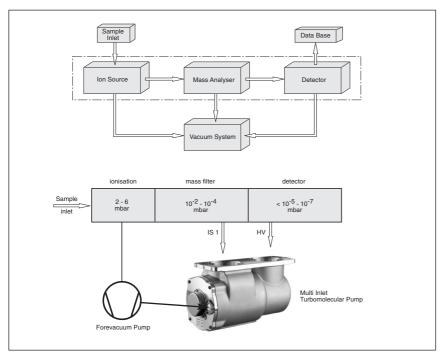
Pumping speed as a function of the inlet pressure

- Space-saving
- Easy to integrate into complex vacuum systems
- High productivity
- Low operating costs
- Operation with dry backing pumps

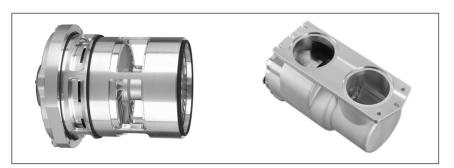
TURBOVAC TW 1600

Inlet flange	200 ISO-F	250 ISO-F • 250 CF
Pumping speed		
N ₂ Ix	s ⁻¹ 1000	1420
Ar I x	s ⁻¹ 820	1200
Max. gas throughput		
N ₂ mbar x I x	s ⁻¹ 7.4	7.4
Ar mbar x I x	s ⁻¹ 6.8	6.8
Compression ratio k ₀		
for O-ring sealed pumps		
N_2	1 x 10 ⁷	1 x 10 ⁷
Ar	3 x 10 ⁸	3 x 10 ⁸
Ultimate pressure mbar (T	orr) < 3 x 10 ⁻¹⁰ (< 2.25 x 10 ⁻¹⁰)	< 3 x 10 ⁻¹⁰ (< 2.25 x 10 ⁻¹⁰)
Max. foreline pressure for N ₂ mbar (T	orr) 8 (6)	8 (6)
Recommended forevacuum pump (alternatively)	TRIVAC D 65 B + RUVAC WA 501 DIVAC 4.8 VT SOGEVAC SV 25	TRIVAC D 65 B + RUVAC WA 501 DIVAC 4.8 VT SOGEVAC SV 25
	SCROLLVAC SC 30 D	SCROLLVAC SC 30 D
Run-up time to 95% speed	nin < 10	< 10
Purge / vent port	ON G 1/4"	G 1/4"
Cooling water connection	G 3/8"	G 3/8"
Weight, approx. kg (os) 40 (88.3)	40 (88.3)
Supply voltage V	AC 100 - 240	100 - 240
Max. power consumption	W 700	700

Ordering Information


TURBOVAC TW 1600

Inlet flange	Foreline flange	Cooling method	Interface	
DN 200 ISO-F	DN 40 KF	Water-cooled	Profibus	Part No. 800041V2144
DN 250 ISO-F	DN 40 KF	Water-cooled	Profibus	Part No. 800041V2444
DN 250 CF	DN 40 KF	Water-cooled	Profibus	Part No. 800041V2844
Purge filter				Part No. 200 18 515
Accessories for serial i	nterfaces RS 232 C and	RS 485 C		see chapter "Turbomolecular Pumps", para. "Accessories"


Special Turbomolecular Pumps

TURBOVAC Multi Inlet

Application example: GC-MS

Multi inlet product examples Left: cartridge, right: dual inlet

Advantages to the User

- Reduction of system costs
- Smaller size of the analysis system
- Reduction in the number of individual vacuum components
- Choice between cartridge or customised pump housing

Typical Applications

For example

- LC-MS (linking of a liquid chromatograph to a mass spectrometer)
- (linking of a gas chromatograph to a mass spectrometer)
- TOF-MS (time-of-flight mass spectrometer)
- ICP-MS (inductively coupled plasma mass spectrometry)
- Helium leak detectors

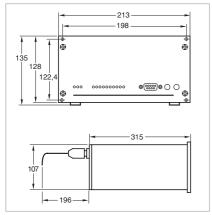
Technical Characteristics

- Dual inlet (pumping down of two analysis chambers)
- Triple inlet (pumping down of three analysis chambers)
- High effective pumping speed

S = 60 to 400 l/sHV stage Interstage IS1 S = 30 to 300 l/sInterstage IS2 S = 5 to 30 l/s

- Cartridge solutions (without pump housing) are available
- Compact vacuum system

Customised versions are available upon request


Notes	

Electronic Frequency Converters TURBO.DRIVE TD20 classic

Technical Features

- For operating the TURBOVAC 151 (C), 361 (C), 600 C, 1000 C and 1100 (C) turbomolecular pump
- Front panel with LED
 - Status, Power, Error, pump runup, pumping power
- Wide voltage range mains input
- Current interfaces like Profibus,
 DeviceNet, Ethernet/IP, RS 232 C,
 RS 485 C and 25-way terminal strip, available as options

Dimensional drawing for the frequency converter Turbo. Drive TD20 classic

- Easy integration within a vacuum system owing to the large variety of different modern interfaces as well as for modernising older systems
- Start/stop function through keys on the front panel
- Remote control and process control through analog and PLC compatible inputs and outputs
- Compatible to frequency converter NT 20, NT 151/361, NT 361 and NT 1000/1500

TURBO.DRIVE TD20 classic

Mains connection, 50 - 60 Hz; selectab	le V	100 to 240 (-15% / +10%)
Max. output voltage	V	3 x 47
Overload current limit	Α	5
Permissible ambient temperature	C (°F)	0 to +45 (+32 to +113)
Protection class	otection class IP 20	
Dimensions (W x H x D) mm		213 x 128 x 315 (1/2 19", 3 HU)
	(in.)	8.39 x 5.04 x 12.40 (1/2 19", 3 HU)
Weight, approx.	g (lbs)	4 (8.8)

Ordering Information

TURBO.DRIVE TD20 classic

TURBO.DRIVE TD20 classic				
without interface	Part No. 800075V0001			
with RS 232 C interface	Part No. 800075V0002 Part No. 800075V0004 Part No. 800075V0003			
with RS 485 C interface				
with Profibus				
with 25 pol I/O	Part No. 800075V0005			
with DeviceNet	Part No. 800075V0006			
with Ethernet/IP	Part No. 800075V0007			
Mains cable				
3 m (10.5 ft)				
Euro plug	Part No. 800102V0002			
UK plug	Part No. 800102V0003			
US plug 6-15 P	Part No. 800102V1002			
Connection cable TURBOVAC - converter				
3 m (10.5 ft)	Part No. 857 65			
5 m (17.5 ft)	Part No. 857 66			
10 m (35.0 ft)	Part No. 857 67			
20 m (70.0 ft)	Part No. 857 68			
50 m (175.0 ft)	Part No. 800152V008			
60 m (210.0 ft)0	Part No. 800152V007			
19" in. rack mounting frame 3 HU	Part No. 161 00			
Pump adapter cable	Part No. 800 000 006			
(required when replacing a				
NT 151/361, NT 361 or NT 1000/1500)				
Adapter cable, 0.2 m long	Part No. 800152V0020			
25-way PLC interface to 2x Phoenix plugs				
(required when a NT 20 with connected				
PLC interface needs to be replaced)				
PC software TURBO.DRIVE Server 1)	Part No. 800110V0102			
	(see Section "Accessories" at the end of the chapter)			

(see Section "Accessories" at the end of the chapter)

Electronic Frequency Converters **TURBOTRONIK NT 10**

Technical Features

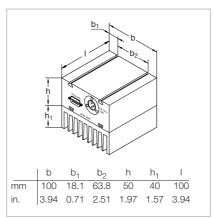
- For operating the TURBOVAC 50 turbomolecular pump
- Bench top unit
- Also for rack mounting (1/4 19", 3 HU)
- Controls and indicators on the front
- Inputs for remote control and process controller
- Freely assignable relays (e.g. to control the backing pumps)

Technical Data

TURBOTRONIK NT 10

Mains connection, 50 - 60 Hz	٧	90 - 140/180 - 260	
Max. output voltage	٧	3 x 150	
Overload current limit	Α	0.22	
Permissible ambient temperature	°C (°F)	0 to +40 (+32 to +104)	
Dimensions (W x H x D)	mm (in.)	106 x 128 x 233 (4.17 x 5.04 x 9.17)	
Weight, approx.	kg (lbs)	1.5 (3.3)	

Ordering Information


TURBOTRONIK NT 10

90 - 140 V (with US plug)	Part No. 859 01
180 - 260 V (with EURO plug)	Part No. 859 00
Connecting cable pump - converter	
3 m (10.5 ft)	Part No. 121 08
5 m (17.5 ft)	Part No. 121 09

TURBO.DRIVE S (TDS) for TW 70 H and TW 250 S

TURBO.DRIVE S (front side)

Dimensional drawing for the TURBO.DRIVE S

Technical Features

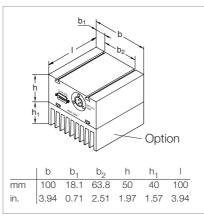
- Compact size
- RS 232 C, RS 485 C or Profibus interface
- Configurations
 - as a separate frequency converter
 - integrated within turbomolecular
- Remote control via remote control interface
- Flexible mounting
- Cost-effective supply of 24 V DC power

Technical Data

TURBO.DRIVE S

Input		
Voltage	V DC	24 ± 5%
Max. continuos current	Α	7
Max. continuos power cons	sumption W	170
Ambient temperature	°C (°F)	+10 to +45 (+50 to +113)
Dimensions (W x H x D),		
including heat sink	mm (in.)	100 x 90 x 100 (3.94 x 3.54 x 3.94)
Weight	kg (lbs)	0.7 (1.55)
Serial interface		RS 232 C, RS 485 C or Profibus

Ordering Information


TURBO.DRIVE S

TUDBO DDIVE C	
TURBO.DRIVE S	Dark No. 0000TOV0000
with RS 232 C interface	Part No. 800070V0002
with RS 485 C interface	Part No. 800070V0003
with Profibus	Part No. 800070V0004
with RS 232 C interface	
and heat sink	Part No. 800070V0005
with RS 485 C interface	
and heat sink	Part No. 800070V0006
Connecting cable TDS - pump	
1 m (3.5 ft)	Part No. 152 47
3 m (10.5 ft)	Part No. 864 40
5 m (17.5 ft)	Part No. 864 50
START/STOP switch (for manual operation)	Part No. 152 48
Hat rail adaptor as mounting aid	Part No. 800110V0003
Accessories for RS 232 C	see chapter "Turbomolecular Pumps",
and RS 485 C interfaces	para. "Accessories"

TURBO.DRIVE 300 (TD 300) for TW 70, TW 250 S, TW 300 and TW 300 H

TURBO.DRIVE 300 (front side)

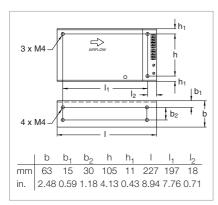
Dimensional drawing for the TURBO.DRIVE 300

Technical Features

- Compact size
- RS 232/422 C or RS 485 C interface
- Configurations
 - as a separate frequency converter
 - integrated within turbomolecular
- Remote control via remote control interface
- Flexible mounting
- Cost-effective supply of 24 V DC power

Technical Data

TURBO.DRIVE 300


Input		
Voltage	V DC	24 ± 5%
Max. continuos current	Α	7
Max. continuos power consumption W		170
Ambient temperature	°C (°F)	+5 to +45 (+41 to +113)
Dimensions (W x H x D)	mm (in.)	100 x 90 x 100 (3.94 x 3.54 x 3.94)
Weight	kg (lbs)	0.7 (1.55)
Serial interface		RS 232/422 C or RS 485 C

Ordering Information

TURBO.DRIVE 300

TURBO.DRIVE 300			
with RS 232/422 C interface	Part No. 800072V0001		
with RS 485 C interface	Part No. 800072V0003		
with Profibus	Part No. 800072V0004		
Connecting cable TD 300 - pump			
1 m (3.5 ft)	Part No. 152 47		
3 m (10.5 ft)	Part No. 864 40		
5 m (17.5 ft)	Part No. 864 50		
START/STOP switch (for manual operation)	Part No. 152 48		
Hat rail adaptor as mounting aid	Part No. 800110V0003		
Accessories for RS 232 C	see chapter "Turbomolecular Pumps",		
and RS 485 C interfaces	para. "Accessories"		

Power Supply PS 700 for TW 701 Turbomolecular Pumps

Dimensional drawing for the power supply PS 700

Technical Features

- 59 V DC OEM power supply for screw fixing in electrical cabinets

Technical Data

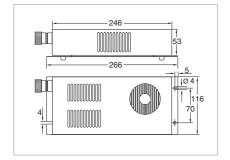
Power Supply PS 700

Input				
Mains voltage	V DC	85-265		
Max. continuos power consumption W		850		
Output				
Voltage, nominal	V DC	59		
Max. continuos current	Α	13		
Max. continuos power cons	sumption W	750		
Ambient temperature	°C (°F)	0 to +70 (+32 to +158)		
Dimensions (W x H x D)	mm (in.)	227 x 63 x 127 (8.94 x 2.48 x 5.0)		
Weight	kg (lbs)	2 (4.4)		

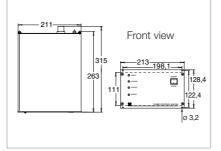
Ordering Information

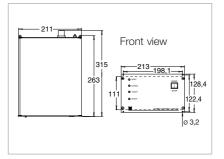
Power Supply PS 700

OEM power supply 59 V DC	Part No. 864 45	
59 V DC cable TW 700 – power supply		
3 m (10.5 ft)	Part No. 200 12 729	
5 m (17.5 ft)	Part No. 200 12 730	
10 m (35.0 ft)	Part No. 200 12 731	
20 m (70.0 ft)	Part No. 200 15 064	
Mains cable for OEM power supply,		
2 m (7 ft)		
with EURO plug	Part No. 800102V0001	
with US plug, 220 V AC	Part No. 800102V1001	
with US plug, 115 V AC (7.5 ft)	Part No. 992 76 513	
START/STOP switch for TURBO.DRIVE S		
(for manual operation)	Part No. 152 48	


See the TPC and TSC controllers in the Product Section C10 "Turbomolecular Pump Systems" for additinal controllers for the TURBOVAC TW 300 and TW 700

Power Supply Units for TURBO.DRIVE S, TURBO.DRIVE 300 and TW 700/701





Dimensional drawing for the power supply TURBO.POWER 300

Dimensional drawing for the power supply TURBO.CONTROL 300

Dimensional drawing for the power supply TURBO.CONTROL 700

Technical Features

- Cost-effective supply of 24 V DC power for TURBO.DRIVE S and **TURBO.DRIVE 300**
- Plug & play
- Bench top unit or for cabinet mounting

Technical Features

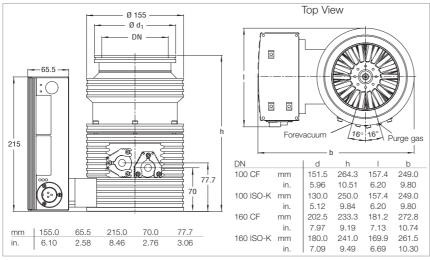
- For supplying 24 V DC power to the TURBO.DRIVE S and **TURBO.DRIVE 300**
- Plug & play
- Bench top unit or for cabinet mounting
- Mains switch
- START/STOP switch for the turbomolecular pump
- Remote control via remote interface
- Status indicating LEDs and status relays

Technical Features

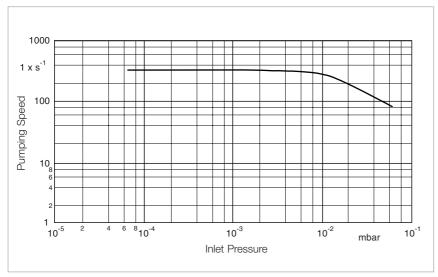
- For supplying 59 V DC power to the TW 700/701
- Plug & play
- Bench top unit or for cabinet mounting
- Mains switch
- START/STOP switch for the turbomolecular pump
- Remote control via remote interface
- Status indicating LEDs and status relays

Power Supply

		TURBO.POWER 300	TURBO.CONTROL 300	TURBO.CONTROL 700
Input				
Mains voltage		85-264 V / 50/60 Hz	85-264 V / 50/60 Hz	85-264 V / 50/60 Hz
Max. power consumption	VA	300	300	805
Output				
Voltage, nominal	V DC	24	24	59
Max. continuos current	Α	8.4	8.4	8.5
Ambient temperature	°C (°F)	0 to +40 (+32 to +104)	0 to +40 (+32 to +104)	0 to +40 (+32 to +104)
Dimensions (W x H x D)	mm (in.)	116 x 53 x 260	213 x 129 x 320	213 x 129 x 320
		(4.57 x 2.09 x 10.24)	(8.39 x 5.08 x 12.6)	(8.39 x 5.08 x 12.6)
Weight	kg (lbs)	1.5 (3.3)	1.5 (3.3)	2.5 (5.52)


Ordering Information

Power Supply


	TURBO.POWER 300	TURBO.CONTROL 300	TURBO.CONTROL 700
Power supply TURBO.POWER 300	Part No. 800100V0002	_	-
TURBO.CONTROL 300	_	Part No. 800100V0001	_
TURBO.CONTROL 700	-	-	Part No. 800101V0001
DC cable			
frequency converter - power supply unit	24 V DC power cable	24 V DC control cable	59 V DC control cable
1 m (3.5 ft)	Part No. 800094V0100	Part No. 800091V0100	Part No. 800093V0100
3 m (10.5 ft)	Part No. 800094V0300	Part No. 800091V0300	Part No. 800093V0300
5 m (17.5 ft)	Part No. 800094V0500	Part No. 800091V0500	Part No. 800093V0500
10 m (35.0 ft)	Part No. 800094V1000	Part No. 800091V1000	Part No. 800093V1000
20 m (70.0 ft)	Part No. 800094V2000	Part No. 800091V2000	Part No. 800093V2000
Mains cable, 3 m (10.5 ft)			
with EURO plug	Part No. 800102V0002	Part No. 800102V0002	Part No. 800102V0002
UK plug	Part No. 800102V0003	Part No. 800102V0003	Part No. 800102V0003
with US plug 6-15 P, 220 V AC	Part No. 800102V1002	Part No. 800102V1002	Part No. 800102V1002
with US plug, 115 V AC (7.5 ft)	Part No. 992 76 513	Part No. 992 76 513	Part No. 992 76 513
Hat rail adaptor as mounting aid	Part No. 800110V0003	-	-

Magnetic Rotor Suspension with Integrated Frequency Converter, with Compound Stage TURBOVAC MAG W 300/400

Dimensional drawing for the TURBOVAC MAG W 300/400

Pumping speed of the TURBOVAC MAG W 300/400 as a function of the inlet pressure

Typical Applications

- Gas analysis systems
- Particle accelerators
- Electron microscopes
- Research

Technical Characteristics

- Installation in any orientation
- DN 100 or 160 ISO-K and/or CF high vacuum connection
- DN 16 KF with clamped forevacuum connection
- Purge gas/venting connection DN 16 KF with clamped connection (purge/vent)
- Water or air cooling optional
- CE and RoHS compliant; fulfilment of UL requirements
- 2 slots for industrial communications modules
- standard 9 pin 24 V PLC I/O
- further interfaces can be fitted: Ethernet, ProfiBus, DeviceNet, RS 232/RS 485

- Highest pumping speed from the smallest possible size.
- New standard regarding maintenance free systems.
- Suitability for vibration sensitive applications in the area of analytical engineering, thin-film technology, electron microscopes, research, development among others.
- Flexibility due to the modular concept; the converter is optionally also available by way of a bench top

TURBOVAC MAG W

	300 iP		400 iP		
High vacuum connection DN	100 ISO-K	100 CF	160 ISO-K	160 CF	
Pumping speed					
N_2 I x s ⁻¹	300	300	365	365	
H ₂ I x s ⁻¹	190	190	200	200	
He I x s ⁻¹	260	260	290	290	
Rotational speed min ⁻¹ (rpm)	58 800 (58 800)	58 800 (58 800)	58 800 (58 800)	58 800 (58 800)	
Compression					
N_2	2.0 x 10 ⁹	2.0 x 10 ⁹	2.0 x 10 ⁹	2.0 x 10 ⁹	
H_2	3.2 x⋅ 10 ³	3.2×10^3	3.2×10^3	3.2 x 10 ³	
Не	9.2 x 10 ⁴	9.2 x 10 ⁴	9.2×10^4	9.2 x 10 ⁴	
Ultimate pressure mbar (Torr)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)	
Max. degassing temperature °C (°F)	-	80 (176)	_	80 (176)	
Max. forevacuum pressure for N ₂ mbar (Torr)	8 (6)	8 (6)	8 (6)	8 (6)	
Recommended backing pump	TRIVAC D 2,5 E TRIVAC D 8 B	TRIVAC D 2,5 E TRIVAC D 8 B	TRIVAC D 2,5 E TRIVAC D 8 B	TRIVAC D 2,5 E TRIVAC D 8 B	
Run-up time min	< 3	< 3	< 3	< 3	
Forevacuum connection (clamped) DN	16 ISO-KF	16 ISO-KF	16ISO- KF	16 ISO-KF	
Seal gas / venting connection (clamped) DN	16 ISO-KF	16 ISO-KF	16 ISO-KF	16 ISO-KF	
Water cooling connection (optional) G	1/8"	1/8"	1/8"	1/8"	
Weight, approx. kg (lbs)	12 (26.49)	12 (26.49)	12 (26.49)	12 (26.49)	
Accessories for all Pumps					
Integrated frequency converter TURBO.DRIVE iS					
Power supply V	48	48	48	48	
Residual ripple %	< 2	< 2	< 2	< 2	
Power rating					
maximum W	400	400	400	400	
at ultimate pressure W	259	259	259	259	
DC current consumption, max. A	7.5 to 9.3	7.5 to 9.3	7.5 to 9.3	7.5 bis 9.3	
DC power supply voltage range V	43 to 53	43 to 53	43 to 53	43 bis 53	
Length of the DC connection cable, max.					
for 3 x 1,5 mm ² m	5	5	5	5	
for 3 x 2,5 mm ² m	20	20	20	20	
Contact rating for the relays, max.	32 V; 0.5 A	32 V; 0.5 A	32 V; 0.5 A	32 V; 0.5 A	
Permissible ambient temperature	10 1- 40 (50 1- 45 1)	101- 40/501-101	40 1- 40 /50 1 46 11	10 1- 40 /50 1- 40 %	
during operation °C (°F)	10 to 40 (50 to 104)	10 to 40 (50 to 104)	10 to 40 (50 to 104)	10 to 40 (50 to 104)	
during storage °C (°F)	0 to 60 (0 to 140)	0 to 60 (0 to 140)	0 to 60 (0 to 140)	0 to 60 (0 to 140)	
Relative humidity of the air,	E +- 0F	C +- OC	C +- OC	C +- 05	
non-condensing %	5 to 85	5 to 85	5 to 85	5 to 85	
Protection class IP	30	30	30	30	
Overvoltage category				II 2	
Pollution category	2	2	2	2	

TURBOVAC MAG W

	300 iP	400 iP
Turbomolecular pump TURBOVAC MAG W		
with integrated frequency converter		
and seal gas connection		
DN 100 ISO-K	Part No. 410300V0505	_
DN 100 CF	Part No. 410300V0506	_
DN 160 ISO-K	-	Part No. 410400V0505
DN 160 CF	-	Part No. 410400V0506
Splitter guard		
DN 100 ISO-K		
coarse (3.2 x 3.2 mm)	Part No. 800132V0101	Part No. 800132V0101
fine (1.6 x 1.6 mm)	Part No. 800132V0102	Part No. 800132V0102
DN 100 CF		
coarse (3.2 x 3.2 mm)	Part No. 200 91 514	Part No. 200 91 514
fine (1.6 x 1.6 mm)	Part No. E 200 17 195	Part No. E 200 17 195
DN 160 ISO-K	Part No. 200 00 307	Part No. 200 00 307
DN 160 CF	Part No. 200 17 247	Part No. 200 17 247
Seal gas and venting valve	upon request	upon request
Flange heater		
100 CF, 230 V, 50 Hz	Part No. 854 27	Part No. 854 27
100 CF, 110 V, 60 Hz	Part No. 854 28	Part No. 854 28
160 CF, 230 V, 50 Hz	Part No. 854 37	Part No. 854 37
160 CF, 110 V, 60 Hz	Part No. 854 38	Part No. 854 38
Water cooling	Part No. 410300V0101	Part No. 410300V0101
Air cooling	Part No. 410300V0102	Part No. 410300V0102

Ordering Information


TURBO.POWER 500

TURBO.POWER 500	Part No. 410300V0221
DC cable (connection between	
TURBO.POWER 500 and pump)	
1 m	Part No. 410300V2001
3 m	Part No. 410300V2003
5 m	Part No. 410300V2005
10 m	Part No. 410300V2010
20 m	Part No. 410300V2020
Mains cord	
3 m (EU)	Part No. 800102V0002
3 m (US)	Part No. 800102V1002

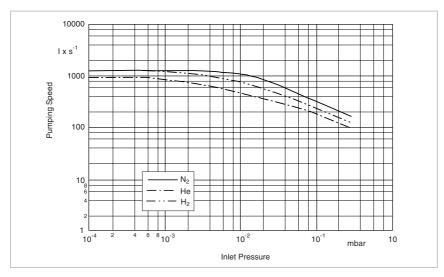
Notes	

Magnetic Rotor Suspension with Separate Frequency Converter, without Compound Stage TURBOVAC MAG 1500 CT

Dimensional drawing for the TURBOVAC MAG 1500 CT

Typical Applications

- All major semiconductor processes such as Etch, CVD, PVD and Ion Implantation
- Load locks and transfer chambers


Technical Features

- Active 5-axis magnetic bearing system
- Patented KEPLA-COAT® for rotor and stator to prevent corrosion
- Low noise and vibration levels
- Operation in any orientation
- Advanced rotor design for high throughput
- Integrated purge gas system
- CT versions: Integrated temperature management system
- Bearing and temperature system are controlled digitally
- Intelligent power control system

- Maintenance-free
- High throughput for all process
- High pumping speed at low
- High foreline pressure tolerance: up to 1.7 mbar (1.13 Torr)
- High resistance against corrosive
- Robust against particles and depo-
- Temperature control up to 90 °C (194 °F) to avoid condensation
- Lowest weight and size in its class
- Application specific design

TURBOVAC MAG 1500 CT

Inlet flange	DN	200 ISO-F	250 ISO-F
Pumping speed according to P	NEUROP		
N_2	I x s ⁻¹	1100	1220
He	I x s ⁻¹	1000	1180
H ₂	I x s ⁻¹	980	1020
Speed	min ⁻¹	36 000	36 000
Compression ratio			
N_2		> 10 ⁸	> 10 ⁸
Ultimate pressure according to	DIN 28 400		
	mbar (Torr)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)
Max. foreline pressure for N ₂	mbar (Torr)	1.7 (1.2)	1.7 (1.2)
Recommended forevacuum pu Rotary vane pump or dry compressing pump offering a pumping speed of		TRIVAC D 65 BCS	TRIVAC D 65 BCS
Run-up time	min	< 6	< 6
forevacuum flange	DN	40 KF	40 KF
Purge / vent port	VCR nut	1/4"	1/4"
Cooling water connection			
(OD of tube)	mm (in.)	6.4 (0.25)	6.4 (0.25)
Weight, approx.	kg (lbs)	32 (70)	32 (70)

Pumping speed of the TURBOVAC MAG 1500 C/CT as a function of the inlet pressure

TURBOVAC MAG 1500 CT

TURBOVAC MAG turbomolecular pump	Part No. 400020V0002	Part No. 400021V0002
Electronic frequency converter		
MAG.DRIVE digital	Part No. 400035V0011	Part No. 400035V0011
with Profibus interface	Part No. 400035V0013	Part No. 400035V0013
with RS 232 Cinterface	Part No. 400035V0014	Part No. 400035V0014
with Ethernetinterface	Part No. 400035V0015	Part No. 400035V0015
with DeviceNetinterface	Part No. 400035V0016	Part No. 400035V0016
Plug-in control	Part No. 121 36	Part No. 121 36
Connecting cables converter – pump 1)		
1.5 m (5.25 ft) DRIVE/BEARING	Part No. 400036V0001	Part No. 400036V0001
1.5 m (5.25 ft) TMS	Part No. 400037V0001	Part No. 400037V0001
03.0 m (10.5 ft) DRIVE/BEARING	Part No. 400036V0008	Part No. 400036V0008
03.0 m (10.5 ft) TMS	Part No. 400037V0008	Part No. 400037V0008
05.0 m (17.5 ft) DRIVE/BEARING	Part No. 400036V0004	Part No. 400036V0004
5.0 m (17.5 ft) TMS	Part No. 400037V0004	Part No. 400037V0004
10.0 m (35.0 ft) DRIVE/BEARING	Part No. 400036V0002	Part No. 400036V0002
10.0 m (35.0 ft) TMS	Part No. 400037V0002	Part No. 400037V0002
20.0 m (70.0 ft) DRIVE/BEARING	Part No. 400036V0003	Part No. 400036V0003
20.0 m (70.0 ft) TMS	Part No. 400037V0003	Part No. 400037V0003
Seal kit		
DN 250 metal	Part No. 200 07 901	Part No. 200 07 901

¹⁾ further connecting cables can be found under MAG.DRIVE digital in the section "Turbomolecular Pumps with Magnetic Rotor Suspension", para. "Electronic Frequency Converters"


Notes	

Magnetic Rotor Suspension with Separate Frequency Converter, with Compound Stage TURBOVAC MAG W 830/1300 C

Typical Applications

- Semiconductor processes, like PVD and ion implantation
- Transfer chambers
- Particle accelerators
- Research instruments and systems
- Coaters

3.86

0.33

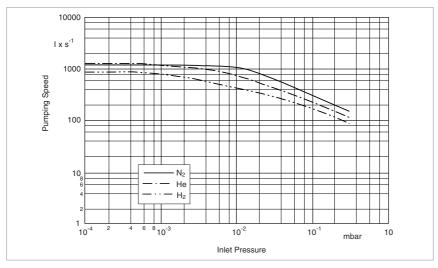
3.35

1.22

in. Dimensional drawing for the TURBOVAC MAG W 830/1300 C

4.06

4.52


Technical Features

- Active 5-axis magnetic bearing system
- Digital monitoring of the bearing system
- Low noise and vibration levels
- Operation in any orientation
- Advanced rotor design for high throughput
- purge gas connection
- Intelligent power control system

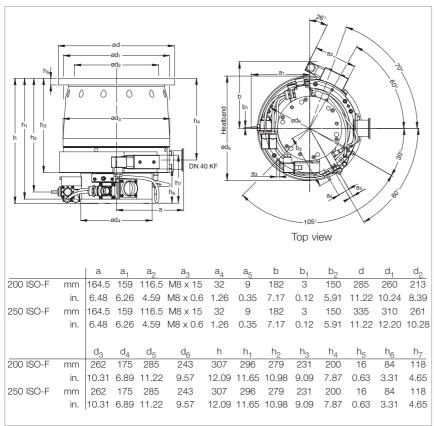
- Maintenance-free
- High throughput for all process gases
- High pumping speed at low pressure
- High foreline pressure tolerance: up to 2 mbar (1.5 Torr)
- Lowest weight and size in its class
- Application specific design

TURBOVAC MAG

	W 830 W 830 C W 1300		W 13	W 1300 C	
Inlet flange DN	160 CF	160 ISO-F	200 CF	200 ISO-F	250 ISO-F
Pumping speed according to PNEUROP					
N_2 Ix s ⁻¹	900	700	1170	1100	1220
He I x s ⁻¹	900	650	1200	1050	1180
H ₂ Ix s ⁻¹	740	300	920	920	1020
Speed min ⁻¹	36 000	24000	36 000	36 000	36 000
Compression ratio					
N_2	1.5 x 10 ⁸	> 5 x 10 ⁷	1.5 x 10 ⁸	> 108	> 108
Ultimate pressure according to DIN 28 400					
mbar (Torr	< 1 x 10 ⁻¹⁰	< 10 ⁻⁸	< 1 x 10 ⁻¹⁰	< 10 ⁻⁸	< 10 ⁻⁸
	(< 0.75 x 10 ⁻¹⁰)	(< 0.75 x 10 ⁻⁸)	(< 0.75 x 10 ⁻¹⁰)	(< 0.75 x 10 ⁻⁸)	(< 0.75 x 10 ⁻⁸)
Max. foreline pressure for N ₂					
with convection cooling mbar (Torr	0.2 (0.15)	_	0.2 (0.15)	_	_
with water cooling mbar (Torr	2.0 (1.5)	2.0 (1.5)	2.0 (1.5)	2.0 (1.5)	2.0 (1.5)
Recommended forevacuum pump					
Rotary vane pump	TRIVAC	TRIVAC	TRIVAC	TRIVAC	TRIVAC
	D 65 BCS	D 65 BCS	D 65 BCS	D 65 BCS	D 65 BCS
or dry compressing pump offering a pumping speed of 100 m ³ /h					
Run-up time mir	< 6.0	< 4.0	< 6.0	< 6.0	< 6.0
forevacuum flange DN	40 KF	40 KF	40 KF	40 KF	40 KF
Purge / vent port DN	10 KF / 16 KF	10 KF / 16 KF	10 KF / 16 KF	10 KF / 16 KF	10 KF / 16 KF
Cooling water connection					
(OD tube) mm (in.	1/4"	1/4"	1/4"	6 (0.24)	6 (0.24)
Weight, approx. kg (lbs)	35 (77.3)	32 (70.6)	35 (77.3)	32 (70.6)	32 (70.6)

Pumping speed of the TURBOVAC MAG W 1300 C (DN 250) as a function of the inlet pressure

TURBOVAC MAG


W 830 W 830 C W 1300 W 1300 C DN 160 ISO-F 200 ISO-F 250 ISO-F Inlet flange 160 CF 200 CF TURBOVAC MAG turbomolecular pump Part No. Part No. Part No. Part No. Part No. 400100V0041 400100V0005 400110V0051 400110V0011 400110V0021 Electronic frequency converter MAG.DRIVE digital Part No. Part No. Part No. Part No. Part No. 400035V0011 400035V0011 400035V0011 400035V0011 400035V0011 with Profibus interface Part No. Part No. Part No. Part No. Part No. 400035V0013 400035V0013 400035V0013 400035V0013 400035V0013 with RS 232 C interface Part No. Part No. Part No. Part No. Part No. 400035V0014 400035V0014 400035V0014 400035V0014 400035V0014 with Ethernet interface Part No. Part No. Part No. Part No. Part No. 400035V0015 400035V0015 400035V0015 400035V0015 400035V0015 with DeviceNet interface Part No. Part No. Part No. Part No. Part No. 400035V0016 400035V0016 400035V0016 400035V0016 400035V0016 Part No. Part No. Part No. Part No. Part No. Plug-in control 121 36 121 36 121 36 121 36 121 36 Part No. Part No. Part No. Part No. Part No. Pure gas valve 121 33 121 33 121 33 121 33 121 33 Connecting cable converter - pump 1) Part No. Part No. Part No. Part No. Part No. 400036V0001 400036V0001 400036V0001 400036V0001 400036V0001 1.5 m (5.25 ft) DRIVE/BEARING Part No. Part No. Part No. Part No. Part No. 400036V0008 400036V0008 400036V0008 400036V0008 400036V0008 3.0 m (10.5 ft) DRIVE/BEARING Part No. Part No. Part No. Part No. Part No. 400036V0002 400036V0002 400036V0002 400036V0002 400036V0002 10.0 m (35.0 ft) DRIVE/BEARING Part No. Part No. Part No. Part No. Part No. 400036V0003 400036V0003 400036V0003 400036V0003 400036V0003 20.0 m (70.0 ft) DRIVE/BEARING Connecting cable for optional purge gas valve Part No. Part No. Part No. Part No. Part No. 400038V0007 400038V0007 400038V0007 400038V0007 400038V0007 1.5 m (5.25 ft) pump/coverter Part No. Part No. Part No. Part No. Part No. 400038V0006 400038V0006 400038V0006 400038V0006 400038V0006 3.0 m (10.5 ft) pump/coverter Part No. Part No. Part No. Part No. Part No. 400038V0002 400038V0002 400038V0002 400038V0002 400038V0002 10.0 m (35.0 ft) pump/coverter Part No. Part No. Part No. Part No. Part No. 400038V0009 400038V0009 400038V0009 400038V0009 400038V0009 20.0 m (XX.X ft) pump/coverter

¹⁾ further connecting cables can be found under MAG.DRIVE digital in the section "Turbomolecular Pumps with Magnetic Rotor Suspension", para. "Electronic Frequency Converters'

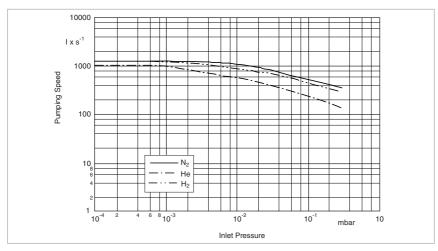
Notes	

TURBOVAC MAG W 1500 CT

Dimensional drawing for the TURBOVAC MAG W 1500 CT

Typical Applications

- All major semiconductor processes such as Etch, CVD, PVD and Ion Implantation


Technical Features

- Active 5-axis magnetic bearing system
- Bearing and temperature system are controlled digitally
- Corrosion resistant
- Low noise and vibration levels
- Operation in any orientation
- Compound rotor design for high pumping speed and foreline pressure
- Integrated purge gas system
- CT versions: Integrated temperature management system
- Intelligent power control system

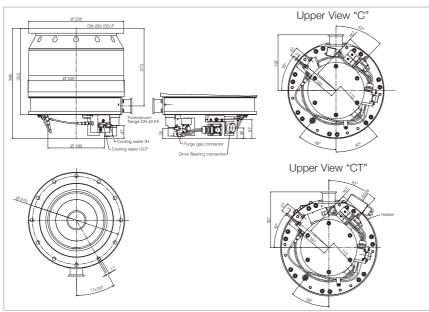
- Maintenance-free
- High throughput for all process gases
- High pumping speed at low pressure
- High foreline pressure tolerance: up to 2.6 mbar (1.95 Torr)
- High resistance against corrosive gases
- Robust against particles and depo-
- Temperature control up to 90 °C (194 °F) to avoid condensation
- Lowest weight and size in its class
- Application specific design

TURBOVAC MAG W 1500 CT

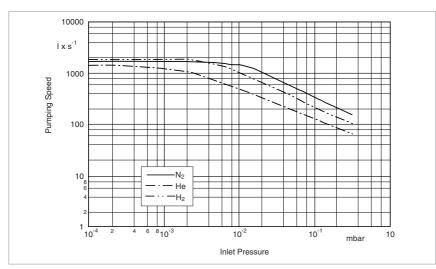
Inlet flange DN	200 ISO-F	250 ISO-F	200 CF
Pumping speed according to PNEUROP			
N_2 I x s ⁻¹	1100	1220	1100
He I x s ⁻¹	1000	1180	1000
H ₂ I x s ⁻¹	800	850	800
Speed min ⁻¹	36 000	36 000	36 000
Compression ratio			
N_2	> 108	> 108	> 108
Ultimate pressure according to DIN 28 400			
mbar (Torr)	< 10 ⁻⁸	< 10 ⁻⁸	< 10 ⁻¹⁰
	(< 0.7 x 10 ⁻⁸)	(< 0.7 x 10 ⁻⁸)	(< 0.7 x 10 ⁻⁸)
Max. foreline pressure for N ₂ mbar (Torr)	2.6 (1.95)	2.6 (1.95)	2.6 (1.95)
Recommended forevacuum pump Rotary vane pump or dry compressing pump offering a pumping speed of 100 m ³ /h	TRIVAC D 65 BCS	TRIVAC D 65 BCS	TRIVAC D 65 BCS
Run-up time to 95% speed min	< 6	< 6	< 6
forevacuum flange DN	40 KF	40 KF	40 KF
Purge / vent port VCR nut	1/4"	1/4"	1/4"
Cooling water connection, hose nipple			
(OD tube) mm (in.)	6.4 (0.25)	6.4 (0.25)	6.4 (0.25)
Weight, approx. kg (lbs)	32 (70.6)	32 (70.6)	32 (70.6)

Pumping speed of the TURBOVAC MAG W 1500 CT (DN 250) as a function of the inlet pressure

TURBOVAC MAG W 1500 CT


Inlet flange	ON 200 ISO-F	250 ISO-F	200 CF
TURBOVAC MAG turbomolecular pump	Part No.	Part No.	Part No.
	400026V0002	400027V0002	400030V0002
Electronic frequency converter			
MAG.DRIVE digital	Part No. 400035V0011	Part No. 400035V0011	Part No. 400035V0011
with Profibus interface	Part No. 400035V0013	Part No. 400035V0013	Part No. 400035V0013
with RS 232 C interface	Part No. 400035V0014	Part No. 400035V0014	Part No. 400035V0014
with Ethernet interface	Part No. 400035V0015	Part No. 400035V0015	Part No. 400035V0015
with DeviceNet interface	Part No. 400035V0016	Part No. 400035V0016	Part No. 400035V0016
Plug-in control	Part No.	Part No.	Part No.
	121 36	121 36	121 36
Connecting cable converter – pump ¹⁾			
1.5 m (5.25 ft) DRIVE/BEARING	Part No.	Part No.	Part No.
	400036V0001	400036V0001	400036V0001
1.5 m (5.25 ft) TMS	Part No.	Part No.	Part No.
	400037V0001	400037V0001	400037V0001
3.0 m (10.5 ft) DRIVE/BEARING	Part No.	Part No.	Part No.
	400036V0008	400036V0008	400036V0008
3.0 m (10.5 ft) TMS	Part No.	Part No.	Part No.
	400037V0008	400037V0008	400037V0008
5 m (17.5 ft) DRIVE/BEARING	Part No.	Part No.	Part No.
	400036V0004	400036V0004	400036V0004
5 m (17.5 ft) TMS	Part No.	Part No.	Part No.
	400037V0004	400037V0004	400037V0004
10 m (35.0 ft) DRIVE/BEARING	Part No.	Part No.	Part No.
	400036V0002	400036V0002	400036V0002
10 m (35.0 ft) TMS	Part No.	Part No.	Part No.
	400037V0002	400037V0002	400037V0002
20 m (70.0 ft) DRIVE/BEARING	Part No.	Part No.	Part No.
-	400036V0003	400036V0003	400036V0003
20 m (70.0 ft) TMS	Part No.	Part No.	Part No.
	400037V0003	400037V0003	400037V0003
Seal kit	Part No.	Part No.	Part No.
DN 250 metal	200 07 901	200 07 901	200 07 901

¹⁾ further connecting cables can be found under MAG.DRIVE digital in the section "Turbomolecular Pumps with Magnetic Rotor Suspension", para. "Frequency Converters"


Notes Control of the

TURBOVAC MAG W 2000 C/CT

Dimensional drawing for the MAG W 2000 C/CT

Pumping speed of the TURBOVAC MAG W 2000 CT (DN 250) as a function of the inlet pressure

Typical Applications

- All major semiconductor processes such as Etch, CVD, PVD and Ion Implantation

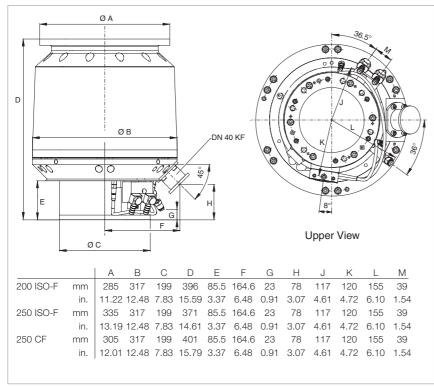
Technical Features

- Active 5-axis magnetic bearing system
- Patented KEPLA-COAT® for rotor and stator to prevent corrosion
- Low noise and vibration levels
- Installation in any orientation
- Compound rotor design for high pumping speed and foreline pressure
- Integrated purge gas system
- CT versions: Integrated temperature management system

- Maintenance-free
- High throughput for all etch gases
- High pumping speed at low pressure
- High foreline pressure tolerance: up to 5.3 mbar (4 Torr)
- High resistance against corrosive
- Robust against particles and deposits
- Temperature management system to avoid condensation
- Application specific design

TURBOVAC MAG

	W 2000 C	W 2000 CT
Inlet flange DN	250 ISO-F	250 ISO-F
Pumping speed according to PNEUROP		
N_2 I x s ⁻¹	1650	1650
He I x s ⁻¹	1800	1800
H ₂ I x s ⁻¹	1720	1720
Speed min ⁻¹	28 800	28 800
Compression ratio		
N_2	> 108	> 10 ⁸
Ultimate pressure according to DIN 28 400		
mbar (Torr)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)
Max. foreline pressure for N ₂ mbar (Torr)	3.5 (2.63)	3.5 (2.63)
Recommended forevacuum pump Rotary vane pump or dry compressing pump offering a pumping speed of 100 m ³ /h	TRIVAC D 65 BCS	TRIVAC D 65 BCS
Run-up time min	< 8	< 8
forevacuum flange DN	40 KF	40 KF
Purge / vent port VCR nut	1/4"	1/4"
Cooling water connection		
(OD tube) mm (in.)	6,4 (0.25)	6.4 (0.25)
Weight, approx. kg (lbs)	68 (150)	68 (150)


Ordering Information

TURBOVAC MAG

	W 2000 C	W 2000 CT	
TURBOVAC MAG turbomolecular pump	Part No. 400047V0001	Part No. 400047V0002	
Electronic frequency converter			
MAG.DRIVE digital	Part No. 400035V0011	Part No. 400035V0011	
with Profibus interface	Part No. 400035V0013	Part No. 400035V0013	
with RS 232 C interface	Part No. 400035V0014	Part No. 400035V0014	
with Ethernet interface	Part No. 400035V0015	Part No. 400035V0015	
with DeviceNet interface	Part No. 400035V0016	Part No. 400035V0016	
Plug-in control	Part No. 121 36	Part No. 121 36	
Connecting cable converter – pump			
1.5 m (5.25 ft) DRIVE/BEARING	Part No. 400036V0001	Part No. 400036V0001	
1.5 m (5.25 ft) TMS	Part No. 400037V0001	Part No. 400037V0001	
3.0 m (10.5 ft) DRIVE/BEARING	Part No. 400036V0008	Part No. 400036V0008	
3.0 m (10.5 ft) TMS	Part No. 400037V0008	Part No. 400037V0008	
5.0 m (17.5 ft) DRIVE/BEARING	Part No. 400036V0004	Part No. 400036V0004	
5.0 m (17.5 ft) TMS	Part No. 400037V0004	Part No. 400037V0004	
10.0 m (35.0 ft) DRIVE/BEARING	Part No. 400036V0002	Part No. 400036V0002	
10.0 m (35.0 ft) TMS	Part No. 400037V0002	Part No. 400037V0002	
20.0 m (70.0 ft) DRIVE/BEARING	Part No. 400036V0003	Part No. 400036V0003	
20.0 m (70.0 ft) TMS	Part No. 400037V0003	Part No. 400037V0003	

TURBOVAC MAG W 2200 C

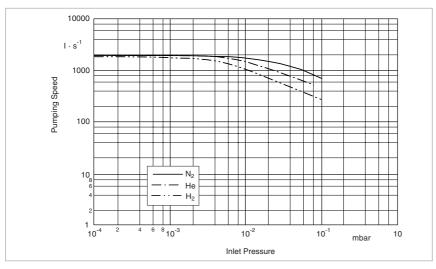
Dimensional drawing for the TURBOVAC MAG W 2200 C

Typical Applications

- All major semiconductor processes such as Etch, CVD, PVD and Ion Implantation
- Coaters

Versions with CF highvacuum connection

- Particle accelerators
- Research instruments and systems


Technical Features

- Active 5-axis magnetic bearing system
- Bearing system are controlled digitally
- Low noise and vibration levels
- Operation in any orientation
- Compound rotor design for high pumping speed and foreline pressure
- purge gas connection
- Intelligent power control system

- Maintenance-free
- High throughput for all process gases
- High pumping speed at low pressure
- High foreline pressure tolerance: up to 2 mbar (1.5 Torr)
- Lowest weight and size in its class
- Application specific design

TURBOVAC MAG

lecililicai Data		W 2200 C W 2200				
	W 2	W 2200 C				
Inlet flange	200 ISO-F	250 ISO-F	250 CF			
Pumping speed according to PNEUROP						
N ₂ Ixs	1600	2000	1800			
Ar I x s	;- 1 1450	1900	1900			
H ₂ Ixs	- 1 1650	1800	1800			
Speed mir	29 400	29 400	29 400			
Compression ratio						
N_2	> 1 x 10 ⁸	> 1 x 10 ⁸	> 1 x 10 ⁸			
Ultimate pressure according to DIN 28 400						
mbar (To	rr) < 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 1 x 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)			
Max. foreline pressure for N ₂						
with convection cooling mbar (To	rr) –	_	0.1 (0.075)			
with water cooling mbar (To	rr) 2 (1.5)	2 (1.5)	1 (0.75)			
Recommended forevacuum pump Rotary vane pump or dry compressing pump offering a pumping speed of 100 m ³ /h	TRIVAC D 65 BCS	TRIVAC D 65 BCS	TRIVAC D 65 BCS			
Run-up time to 95% speed m	in < 8	< 8	< 8			
forevacuum flange	9N 40 KF	40 KF	40 KF			
Purge / vent port VCR n	ut 1/4"	1/4"	1/4"			
Cooling water connection (OD tube) mm (i	n.) 1/2"	1/2"	1/2"			
Weight, approx. kg (lk	48 (106)	48 (106)	60 (132.45)			

Pumping speed of the TURBOVAC MAG W 2200 C (DN 250) as a function of the inlet pressure

TURBOVAC MAG

W 2200 C W 2200

TURBOVAC MAG turbomolecular pump	Part No. 400081V0011	Part No. 400081V0021	Part No. 400081V0061
Electronic frequency converter			
MAG.DRIVE digital	Part No. 400035V0011	Part No. 400035V0011	Part No. 400035V0011
with Profibus interface	Part No. 400035V0013	Part No. 400035V0013	Part No. 400035V0013
with RS 232 C interface	Part No. 400035V0014	Part No. 400035V0014	Part No. 400035V0014
with Ethernet interface	Part No. 400035V0015	Part No. 400035V0015	Part No. 400035V0015
with DeviceNet interface	Part No. 400035V0016	Part No. 400035V0016	Part No. 400035V0016
Plug-in control	Part No. 121 36	Part No. 121 36	Part No. 121 36
Connecting cable converter – pump 1)			
1.5 m (5.25 ft) DRIVE/BEARING	Part No. 400036V0001	Part No. 400036V0001	Part No. 400036V0001
3.0 m (10.5 ft) DRIVE/BEARING	Part No. 400036V0008	Part No. 400036V0008	Part No. 400036V0008
10.0 m (35.0 ft) DRIVE/BEARING	Part No. 400036V0002	Part No. 400036V0002	Part No. 400036V0002
20.0 m (70.0 ft) DRIVE/BEARING	Part No. 400036V0003	Part No. 400036V0003	Part No. 400036V0003
Connection cable			
for optional seal gas valve			
1.5 m pump/converter	Part No. 400038V0007	Part No. 400038V0007	Part No. 400038V0007
3.0 m pump/converter	Part No. 400038V0006	Part No. 400038V0006	Part No. 400038V0006
10.0 m pump/converter	Part No. 400038V0002	Part No. 400038V0002	Part No. 400038V0002
20.0 m pump/converter	Part No. 400038V0009	Part No. 400038V0009	Part No. 400038V0009


¹⁾ further connecting cables can be found under MAG.DRIVE digital in the section "Turbomolecular Pumps with Magnetic Rotor Suspension", para. "Electronic Frequency Converters"

Notes	

TURBOVAC MAG W 2800/3200 C/CT

TURBOVAC MAG W 2800 CT (left) and TURBOVAC MAG W 3200 CT (right)

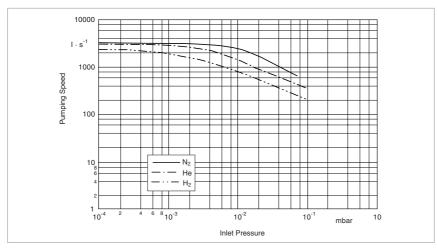
Dimensional drawing for the TURBOVAC MAG W 2800/3200 C/CT

Typical Applications

- All major semiconductor processes such as Etch, CVD, PVD and Ion Implantation

Versions with CF highvacuum connection

- Particle accelerators
- Research instruments and systems


Technical Features

- Active 5-axis magnetic bearing system
- Bearing and temperature system are controlled digitally
- Corrosion resistant
- Low noise and vibration levels
- Installation in any orientation
- Compound rotor design for high pumping speed and foreline pressure
- Integrated purge gas system
- CT versions: Integrated temperature management system
- Intelligent power control system

- Maintenance-free
- High throughput for all process gases
- High pumping speed at low pressure
- High foreline pressure tolerance: up to 2 mbar (1.5 Torr)
- High resistance against corrosive
- Robust against particles and depo-
- Temperature control up to 90 °C (194 °F) to avoid condensation
- Lowest weight and size in its class
- Application specific design

TURBOVAC MAG

	W 2800 C	W 2800 CT	W 2800	W 3200 CT
Inlet flange DN	250 ISO-F	250 ISO-F	250 CF	320 ISO-F
Pumping speed according to PNEUROP				
N_2 I x s ⁻¹	2650	2650	2400	3200
Ar I x s ⁻¹	2450	2450	2450	3000
H ₂ I x s ⁻¹	2100	2100	2100	2250
Speed min ⁻¹	28 800	28 800	28 800	28 800
Compression ratio				
N_2	1 x 10 ⁸	1 x 10 ⁸	1 x 10 ⁹	1 x 10 ⁸
Ultimate pressure according to DIN 28 400 mbar (Torr)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)	< 1 x 10 ⁻¹⁰ (< 0.75 x 10 ⁻¹⁰)	< 10 ⁻⁸ (< 0.75 x 10 ⁻⁸)
$\begin{array}{ll} \text{Max. foreline pressure for N}_2 \\ \text{with convection cooling} & \text{mbar (Torr)} \\ \text{with water cooling} & \text{mbar (Torr)} \end{array}$	– 2 (1.5)	– 2 (1.5)	0.3 (0.23) 3 (2.25)	– 2 (1.5)
Recommended forevacuum pump Rotary vane pump or dry compressing pump offering a pumping speed of 100 m ³ /h	TRIVAC D 65 BCS	TRIVAC D 65 BCS	TRIVAC D 65 BCS	TRIVAC D 65 BCS
Run-up time min	< 10	< 10	< 10	< 10
Forevacuum flange DN	40 KF	40 KF	40 KF	40 KF
Purge / vent port VCR nut	1/4"	1/4"	1/4"	1/4"
Cooling water connection Swagelok tube	1/4"	1/4"	1/4"	1/4"
Weight, approx. kg (lbs)	64 (141.3)	64 (141.3)	75 (165.6)	65 (143.5)

Pumping speed of the TURBOVAC MAG W 3200 C (DN 320) as a function of the inlet pressure

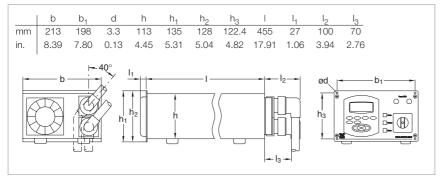
TURBOVAC MAG

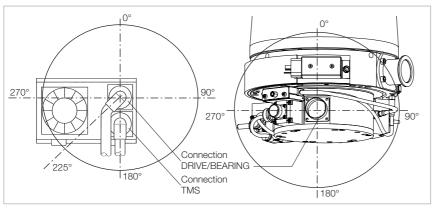
	W 2800 C	W 2800 CT	W 2800	W 3200 CT
Inlet flange DN	250 ISO-F	250 ISO-F	250 CF	320 ISO-F
TURBOVAC MAG turbomolecular pump	Part No.	Part No.	Part No.	Part No.
	400000V0001	400000V0002	400006V0071	400003V0002
Electronic frequency converter				
MAG.DRIVE digital	Part No.	Part No.	Part No.	Part No.
	400035V0011	400035V0011	400035V0011	400035V0011
with Profibus interface	Part No.	Part No.	Part No.	Part No.
	400035V0013	400035V0013	400035V0013	400035V0013
with RS 232 C interface	Part No.	Part No.	Part No.	Part No.
	400035V0014	400035V0014	400035V0014	400035V0014
with Ethernet interface	Part No.	Part No.	Part No.	Part No.
	400035V0015	400035V0015	400035V0015	400035V0015
with DeviceNet interface	Part No.	Part No.	Part No.	Part No.
	400035V0016	400035V0016	400035V0016	400035V0016
Plug-in control	Part No.	Part No.	Part No.	Part No.
	121 36	121 36	121 36	121 36
Connecting cable converter – pump 1)				
1.5 m (5.25 ft) DRIVE/BEARING	Part No.	Part No.	Part No.	Part No.
	400036V0001	400036V0001	400036V0001	400036V0001
1.5 m (5.25 ft) TMS	Part No.	Part No.	_	Part No.
	400037V0001	400037V0001		400037V0001
3.0 m (10.5 ft) DRIVE/BEARING	Part No.	Part No.	Part No.	Part No.
	400036V0008	400036V0008	400036V0008	400036V0008
3.0 m (10.5 ft) TMS	Part No.	Part No.	_	Part No.
	400037V0008	400037V0008		400037V0008
5.0 m (17.5 ft) DRIVE/BEARING	Part No.	Part No.	Part No.	Part No.
	400036V0004	400036V0004	400036V0004	400036V0004
5.0 m (17.5 ft) TMS	Part No.	Part No.	_	Part No.
	400037V0004	400037V0004		400037V0004
10.0 m (35.0 ft) DRIVE/BEARING	Part No.	Part No.	Part No.	Part No.
,	400036V0002	400036V0002	400036V0002	400036V0002
10.0 m (35.0 ft) TMS	Part No.	Part No.		Part No.
, ,	400037V0002	400037V0002	_	400037V0002
20.0 m (70.0 ft) DRIVE/BEARING	Part No.	Part No.	Part No.	Part No.
, ,	400036V0003	400036V0003	400036V0003	400036V0003
20.0 m (70.0 ft) TM	Part No.	Part No.	_	Part No.
, ,	400037V0003	400037V0003		400037V0003
Seal kit				
DN 250 metal	Part No.	Part No.	Part No.	Part No.
	200 07 901	200 07 901	200 07 901	200 07 901

¹⁾ further connecting cables can be found under MAG.DRIVE digital in the section "Turbomolecular Pumps with Magnetic Rotor Suspension", para. "Electronic Frequency Converters"

Notes	

Electronic Frequency Converters MAG.DRIVE digital


MAG.DRIVE digital without plug-in control


MAG.DRIVE digital with plug-in control

- Operation of turbomolecular pumps with magnetically levitated rotors: MAG (W) 830/1300 C, MAG (W) 1500 C/CT, MAG (W) 2000 C/CT, MAG (W) 2200 C und MAG (W) 2800/3200 C/CT
- Easy operation through the controls or the use of plug-in control unit
- Communication to host computer of the customer via serial interface and conventional interface possible
- Setting of speed, temperature of the basic flange and other functions
- Warning in case the pump is running out of specification

- Storing of all parameters in the pump's memory
- Plug-in control
- Small size and low weight
- Integrated fan
- Integrated temperature management system magnetic bearing control system

Dimensional drawing for the MAG.DRIVE digital

Overview connection lines

Technical Data MAG.DRIVE digital

Mains connection, 50/60 Hz V 200 - 240, +10		200 - 240, +10%/-15%	
Current for connected consumers, max.	A 20		
Max. motor voltage	٧	60	
Nominal frequency	Hz	50/60	
Permissible ambient temperature	°C (°F) 0 to +45 (+32 to +113)		
Dimensions (W x H x D)	mm (in.) 483 x 213 x 1/2 19" (19.02 x 8.39 x 1/2		
Weight, approx.	kg (lbs)	10 (22)	

Ordering Information

MAG.DRIVE digital

Jideilig illioili	defing information		MAG.DRIVE digital	
Electronic Frequeny	Converter			
MAG.DRIVE digita				Part No. 400035V0011
with Profibus interface				Part No. 400035V0013
with RS 232 C ir	nterface			Part No. 400035V0014
with Ethernet int	terface			Part No. 400035V0015
with DeviceNet i	interface			Part No. 400035V0016
Plug-in control				Part No. 121 36
Connection line lead	ing to the			
DRIVE/BEARING	of the TURBOVAC MAG			
	Cable outlet	Cable outle	et pump	
	frequency converter			
	DRIVE/BEARING	DRIVE/BEARING	PK	
1.5 m (5.25 ft)	bended 225°	straight	straight	Part No. 400036V0001
1.5 m (5.25 ft)	bended 40°	bended 180°	straight	Part No. 400036V0025
3.0 m (10.5 ft)	straight	bended 180°	straight	Part No. 400036V0006
3.0 m (10.5 ft)	bended 225°	straight	straight	Part No. 400036V0008
3.0 m (10.5 ft)	straight	bended 270°	straight	Part No. 400036V0009
5.0 m (17.5 ft)	bended 225°	straight	straight	Part No. 400036V0004
5.0 m (17.5 ft)	straight	straight	straight	Part No. 400036V0010
8.0 m (28.0 ft)	bended 225°	straight	straight	Part No. 400036V0005
10.0 m (35.0 ft)	bended 225°	straight	straigh	Part No. 400036V0002
20.0 m (70.0 ft)	bended 225°	straight	straight	Part No. 400036V0003
23.0 m (80.5 ft)	bended 225°	straight	straight	Part No. 400036V0012
30.0 m (105 ft)	bended 225°	straight	straight	Part No. 400036V0011
TMS				
(only for CT versio	ns)			
	Cable outlet	Cable outle	et pump	
	frequency converter			
	TMS	TMS	Heater	
1.5 m (5.25 ft)	bended 225°	straight	bended 180°	Part No. 400037V0001
1.5 m (5.25 ft)	bended 40°	straight	bended 180°	Part No. 400037V0025
3.0 m (10.5 ft)	bended 225°	straight	bended 180°	Part No. 400037V0008
5.0 m (17.5 ft)	bended 225°	straight	bended 180°	Part No. 400037V0004
8.0 m (28.0 ft)	bended 225°	straight	bended 180°	Part No. 400037V0005
10.0 m (35.0 ft)	bended 225°	straight	bended 180°	Part No. 400037V0002
20.0 m (70.0 ft)	bended 225°	straight	bended 180°	Part No. 400037V0003
Purge / Vent (only	for optional purge vent	valve Part No. 121 33)		
J ()	Cable outlet	Cable outle	et pump	
	frequency converter		• •	
	TMS	Purge	Vent	
1.5 m (5.25 ft)	straight	bended	bended	Part No. 400038V0007
3.0 m (10.5 ft)	bended 225°	bended	bended	Part No. 400038V0006
10.0 m (35.0 ft)	bended 225°	bended	bended	Part No. 400038V0002
20.0 m (70.0 ft)	straight	bended	bended	Part No. 400038V0009
Connector for hardw				upon request
19" installation frame)			Part No. 161 00

(Miscellaneous) Accessories

Vibration Absorber

Vibration absorbers are used to inhibit the propagation of vibrations from the turbomolecular pump to highly sensitive instruments like electron beam microscopes, micro-balances or analytical instruments.

Ordering Information

Vibration absorber DN 63 ISO-K 66 mm (2.60 in.) long DN 63 CF 81 mm (3.19 in.) long DN 100 ISO-K 84 mm (3.31 in.) long DN 100 CF 100 mm (4.09 in.) long DN 160 ISO-K 84 mm (3.31 in.) long DN 160 CF 104 mm (4.09 in.) long

Vibration Absorber

Part No. 800131V0063 Part No. 500 070 Part No. 800131V0100 Part No. 500 071 Part No. 500 073 Part No. 500 072

Air Cooling Unit

Also an air cooling unit is available as a retrofit kit for convection cooling of the TURBOVAC 50 pump with air. This kit can be easily fitted to the pump in each case using the mounting components contained in the kit.

Technical Data

Rated power consumption of	
the air cooling unit when connected to	
TURBOVAC 50, 151 (C)/361 (C)	W
TURBOVAC 600 C, 1000 C	W

Air Cooling Unit

10.5	
21.0	

Ordering Information

Air cooling unit for	
TURBOVAC 50	
TURBOVAC 151 (C)/361 (C)	
TURBOVAC 600 C, 1000 C	

Air Cooling Unit

230 V	110 V	100 V
Part No. 854 05	Part No. 854 06	Part No. 800152V0015
Part No. 855 31	Part No. 894 08	Part No. 800152V0016
Part No. 855 41	Part No. 170 016	Part No. 800152V0017

Flange Heaters for CF Highvacuum Flanges

Most TURBOVAC pumps can be baked out in order to improve the ultimate pressure attained in the UHV range. Degassing of the turbomolecular pump will only be useful when simultaneously baking out the vacuum chamber.

Technical Data

Flange Heater

Rated power consumption of		
the flange heater		
DN 63 CF, DN 100 CF	W	100
DN 160 CF	W	150

Ordering Information

Flange Heater

230 V	110 V
Part No. 854 04	Part No. 854 07
Part No. 854 27	Part No. 854 28
Part No. 854 37	Part No. 854 38
	Part No. 854 04 Part No. 854 27

Fine Filter

A fine filter integrated in the centering ring protects the pump against particles and dust on the highvacuum side.

The following accessories are also available:

Vacuum gauge COMBIVAC 2T Part No. 230 000 (see Product Section C16)

Delayed venting unit Part No. 500 441 (see Product Section C10)

Ordering Information

Connection flange of the fine filter

DN 40 KF DN 63 ISO-K DN 100 ISO-K

Fine Filter

Part No. 883 98 Part No. 887 20 Part No. 887 21

Solenoid Venting Valve

Technical Data

Venting Valve

Drive voltage	V DC	24
Power consumption	w	4
Connecting flange	DN	16 ISO-KF
Weight, approx.	kg (lbs)	0.3 (0.66)

Ordering Information

Venting Valve

Solenoid venting valve,	
normally closed	Part No. 800120V0011

Further vent valves available in US. Please contact your US sales office

Power Failure Venting Valve

Technical Data

Power Failure Venting Valve

Drive voltage	V DC	24
Power consumption	W	4
Connecting flange	DN	16 ISO-KF
Weight, approx.	kg (lbs)	0.3 (0.66)

Ordering Information

Power Failure Venting Valve

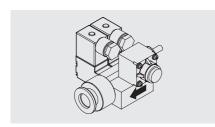
Power failure venting valve,		
normally open	Part No. 800120V0021	

Further vent valves available in US. Please contact your US sales office

Purge Gas and Venting Valve

Technical Data

Purge Gas and Venting Valve


Connecting flange	DN	10 ISO-KF
Weight, approx.	kg (lbs)	0.7 (1.55)

Ordering Information

Purge Gas and Venting Valve

Purge gas and venting valve, 230 V 0.2 mbar x I x s ⁻¹ (12 sccm) 0.4 mbar x I x s ⁻¹ (24 sccm)	Part No. 855 19 Part No. 855 29
Purge gas and venting valve, 110 V 0.2 mbar x I x s ⁻¹ (12 sccm)	Part No. 190 351 069

Purge Gas and Venting Valve

Technical Data

Purge Gas and Venting Valve

Connecting flange		
Inlet		1/4" pipe
Outlet		pump specific or DN 16 ISO-KF
Purge gas pressure, abs.	bar	1.5 to 6.0
Weight, approx.	kg (lbs)	0.5 (1.1)

Ordering Information

Purge Gas and Venting Valve

Purge gas and venting valve, 24 V DC	
0.6 mbar x I x s ⁻¹ (36 sccm)	Part No. 121 33
0.6 mbar x i x s ' (36 sccm)	Fait No. 121 55

Further 0.6 mbar x I x s⁻¹ valves upon request

Accessories for Serial Interfaces RS 232 C and RS 485 C

Through these accessories many control, monitoring and information capabilities can be implemented in connection with the electronic frequency converters and turbomolecular pumps.

The following turbomolecular pumps or electronic frequency converters are supported:

TW 70 H / TURBO.DRIVE S TW 250 S / TURBO.DRIVE S / TURBO.DRIVE 300

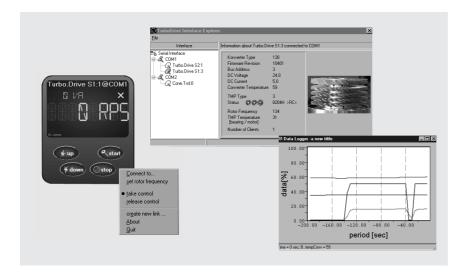
TW 300, TW 300 H / TURBO.DRIVE S / TURBO.DRIVE 300 TW 701 T 1600, TW 1600

Software

Ordering Information

Software

"Turbo.Drive Panel", 3.5 in. floppy 1)


Display Unit

Part No. 800110V0104 1)

PC Software

Part No. 800110V0102 1)

PC Software

PC software for Windows 95 or higher

Technical Features

- Convenient graphical user inter-face
- Several turbomolecular pumps can be operated in parallel
- Display, modify, save and compare the parameter lists of the turbomolecular pumps
- Integration of customer's software
- Recording parameter data over time (for example, temperatures, rotor frequency)

Ordering Information

"Turbo.Drive Server", CD ROM 1)

PC software

1) The PC software can be downloaded from "www.oerlikon.com" Software supports only RS 232 C, RS 485 C and Profibus

¹⁾ The panel software can be downloaded from "www.oerlikon.com"

Adaptor RS 232 C/RS 485 C for Frequency Converter with RS 485 C Interface

Ordering Information

Adaptor RS 232 C/RS 485 C

Adaptor RS 232 C/RS 485 C, mains connection 220 V, 50 Hz, EURO plug

Part No. 800110V0101

Notes	

Miscellaneous

Services for mechanically suspended turbomolecular pumps

Complete Refurbishing at the Service Centre

Complete refurbishing at the service centre includes the following:

Complete disassembly, cleaning, replacement of all wearing parts, mounting, electrical safety test, final test including vibration measurement

Complete Refurbishing with Decontamination at the Service Centre

Complete refurbishing with decontamination at the service centre includes the following:

Complete disassembly, cleaning and decontamination, replacement of all wearing parts, mounting, electrical safety test, final test including vibration measurement

Ordering Information	Complete Refurbishing at the Service Centre	Complete Refurbishing with Decontamination at the Service Centre
For pump		
TURBOVAC 35 / 50D	Part No. AS 2165	Part No. AS 2165 D
TURBOVAC 50	Part No. AS 2133	Part No. AS 2133 D
TURBOVAC TW 70	Part No. AS 2368	Part No. AS 2368 D
TURBOVAC 151	Part No. AS 2134	Part No. AS 2134 D
TURBOVAC TW 250 S	Part No. AS 2168	Part No. AS 2168 D
TURBOVAC TW 300	Part No. AS 2369	Part No. AS 2369 D
TURBOVAC 361	Part No. AS 2135	Part No. AS 2135 D
TURBOVAC 600 / 1000	Part No. AS 2136	Part No. AS 2136 D
TURBOVAC TW 701 / 690	Part No. AS 2330	Part No. AS 2330 D
TURBOVAC 1100	Part No. AS 2137	Part No. AS 2137 D
TURBOVAC T (W) 1600	Part No. AS 2329	Part No. AS 2329 D

Services for magnetically levitated turbomolecular pumps

Complete Refurbishing at the Service Centre

Complete refurbishing at the service centre includes the following:

Complete disassembly, cleaning, replacement of all wearing parts, mounting, electrical safety test, final test including vibration measurement

Complete Refurbishing with Decontamination at the Service Centre

Complete refurbishing with decontamination at the service centre includes the following:

Complete disassembly, cleaning and decontamination, replacement of all wearing parts, mounting, electrical safety test, final test including vibration measurement

Ordering Information	Complete Refurbishing at the Service Centre	Complete Refurbishing with Decontamination at the Service Centre
For pump	Part No. AS 2141	Part No. AS 2141 D
TURBOVAC 340 M	Part No. A5 2141	Part No. A5 2141 D
TURBOVAC 340 MC/MCT	Part No. AS 2142 1)	Part No. AS 2142 D 1)
TURBOVAC MAG 400 C/CT	Part No. AS 2143 ¹⁾	Part No. AS 2143 D 1)
MAG (W) 1600 / 2000	Part No. AS 2164 1)	Part No. AS 2164 D 1)
MAG (W) 830 / 1300 / 1500	Part No. AS 2370 1)	Part No. AS 2370 D 1)
MAG 900 / 1000 / 1200	Part No. AS 2160 1)	Part No. AS 2160 D 1)
MAG 2200	Part No. AS 2200 1)	Part No. AS 2200 D 1)
MAG 2800 / 3200	Part No. AS 2800 1)	Part No. AS 2800 D 1)

Notes

The listed services include the costs for material and working hours for standard pumps. Services for pump variants upon request.

If additional spare parts are needed for repairs, then these are invoiced separately according to a cost estimate.

¹⁾ including rotor replacement