Turbomolecular Drag Pumps
With Electronic Drive Unit TC 600

TMH 261 / TMU 261
TMH 261 P / TMU 261 P
Index

1. Safety Instructions 3
 1.1. For Your Orientation ... 3
 1.2. Pictogram Definitions .. 3

2. Understanding The Pumps
 TMH 261/TMU 261.. 4
 2.1. Main Features ... 4
 Proper Use .. 4
 Improper Use .. 4
 2.2. Differences Between The Pump Types.......................... 5

3. Installation... 5
 3.1. Preparations For Installation.. 5
 3.2. Installing The Pump,
 Connecting The High Vacuum Side 5
 Fitting The Splinter Shield (Accessory) 6
 3.3. Connecting The Fore-Vacuum Side 6
 3.4. Connecting The Cooling Unit.. 7
 3.5. Connecting The Venting Valve... 7
 3.6. Connecting The Casing Heating Unit.............................. 7
 3.7. Connecting The Sealing Gas Valve................................. 7
 3.8. Connecting The Electronic Drive Unit TC 600................. 8
 3.9. Installing The Power Unit ... 8
 3.10. Connecting The Remote Control Unit 9
 3.11. Connecting The Serial Interface RS 485 10
 Connection .. 10
 Connecting The RS 485 ... 10
 3.12. Connections Diagram.. 11

4. Operations... 12
 4.1. Before Switching ON... 12
 4.2. Switching ON ... 12
 4.3. Switching OFF And Venting ... 13
 4.4. Gas Type Dependent Operations 13
 4.5. Shutting Down For Longer Periods 13
 4.6. Operations With The DCU 001/DCU 200 14
 4.7. Operations With The Remote Control Unit............... 14
 Venting Release (Optional) ... 14
 Motor, Turbopump ... 14
 Pumping Station .. 14
 Heating/Reset .. 14
 Standby .. 14
 Rotation Speed Setting Mode Via Input PWM 14
 Switching Outputs.. 15

5. Monitoring Operations 15
 5.1. Operations Display Via LED .. 15
 5.2. Turbopump Temperature Management 15

6. What To Do In Case Of Breakdowns ? 16
 6.1. Replacing The Lubricant Reservoir 17

7. Maintenance.. 17

8. Service... 18

9. Technical Data... 19
 9.1. Dimensions Diagram ... 20

10. Spare Parts... 21

11. Accessories ... 22

12. Drawings... 23

13. Declaration of Contamination.......................... 24

Manufacturer’s Declaration (last page)

Please note: Current operating instructions are available via www.pfeiffer-vacuum.de under “Infoservice”.

1. Safety Instructions

- Read and follow all instructions in this manual.
- Inform yourself regarding:
 - Hazards which can be caused by the pump;
 - Hazards which can be caused by your system.
 - Hazards which can be caused by the media being pumped.
- Avoid exposing any part of the body to vacuum.
- Observe the safety and accident prevention regulations.
- Regularly check that all accident prevention measures are being complied with.
- Do not operate the turbopump with open high vacuum flange.
- Do not carry out any unauthorised conversions or alterations to the turbopump with TC 600.
- When returning the turbopump observe the shipping instructions.
- Use at least 4 bracket screws to connect the high vacuum flange (ISO-flange).
- The turbopump must be anchored in accordance with the installation instructions.
- Do not disconnect the plug between the TC 600 and accessory components during operations.
- Disconnect the voltage supply for the TC 600 before opening the turbopump.
- When working on the turbopump, the high vacuum flange should only be opened once the rotor is at rest.
- When using sealing gas, the pressure in the hose connection should be limited to 2 bar via the overpressure valve.
- If a heater is in use temperatures of up to 120 °C can be present in the area of the high vacuum flange. Take care to avoid burns!
- During operations, temperatures of up to 65 °C can arise in the lower part of the turbopump. Take care to avoid burns!
- Keep leads and cables well away from hot surfaces (> 70 °C).
- Operate the turbopump with TC 600 only in conjunction with the relevant power unit (accessory).
- The unit has been accredited protection class IP 30. When the unit is operated in environments which require other protection classes, the necessary measures must be taken. Protection class IP 54 is afforded by retro-fitting a cover plate (accessory) to the TC 600.
- The mains connection must be subject to a safe connection to the PE (protection class 1).
- If the turbopump and the TC 600 are operated independently of each other (only permissible with the agreement of the manufacturer) the turbopump must be connected to the PE.
- The turbopump and the TC 600 must only be disconnected from each other when the turbopump is completely at rest and the TCP 600 has been disconnected from the power supply.
- The cause of any operating voltage leakage to earth (red LED flashes) must be eliminated to avoid the danger of an electric shock.

Modifications reserved.

1.1. For Your Orientation

On page 47 of this operating manual you will find a drawing showing the connection options for the power unit and accessories.

Instruction in the text
➡ Working instruction: here, you have to do something.

Symbols used
The following symbols are used throughout in all illustrations.

- High vacuum flange
- Fore-vacuum flange
- Venting connection
- Cooling water connection
- Air cooling
- Electric connection
- Sealing gas connection

Abbreviations used
DCU = Operating and display control unit
TC = Electronic drive unit, turbopump
TPS = Power Unit

Position numbers
The same pump and accessory parts have the same position numbers in all illustrations.

1.2. Pictogram Definitions

BEWARE

Danger of burns from touching hot parts.

BEWARE

Danger of personal injury.

CAUTION

Danger of damage to the pump or to the system.

BEWARE

Danger of injury from rotating parts.

PLEASE NOTE

Attention to particularly important information on the product, handling the product or to a particular part of the documentation.
2. Understanding The Pumps TMH 261/TMU 261

2.1. Main Features

Turbopumps TMH/TMU 261 with the TC 600 form a complete unit. Voltage is supplied by the power unit (see "Accessories").

On delivery the pumps are set up for operations without the operations and display unit DCU. Where operations with the DCU are involved, remote plug 8d should be disconnected.

PLEASE NOTE
Cooling
Water cooling or air cooling is required ("Accessories"). Integrated protective measures against excess temperatures: The Electronic Drive Unit TC 600 reduces the rotor rotation speed.

Bearing
High vacuum side: wear free permanent magnetic bearing.
Fore-vacuum side: oil circulatory lubricated ball bearing with ceramic balls.

Proper use
- The Turbomolecular Pumps TMH 261/TMU 261 may only be used for the purpose of generating vacuum.
- The turbopumps may only be used to pump those media against which they are chemically resistant. For other media the operator is required to qualify the pumps for the processes involved.
- If the process produces dust, the maintenance intervals must be specified accordingly and sealing gas must be used (only for version "P").
- If the pump to be operated with more than 50% of the permissible gas load, sealing gas must be used (only for version "P").
- The turbopump must be connected to a backing pump in accordance with Section 3.3.
- Only PFEIFFER power units may be used to operate the TC 600. The use of other power units requires the prior agreement of the manufacturer and equalisation with the valid specification.
- The pumps with TC 600 may only be operated providing the ambient conditions in compliance with Protection Type IP 30 are observed.

Improper use
The following is regarded, inter alia, as improper:
- The pumping of explosive or corrosive gases.
- Operating the pumps in areas where there is a danger of explosion.
- The pumping of gases and vapours which attack the materials of the pumps.
- The pumping of corrosive gases without sealing gas.
- The pumping of condensating vapours.
- Operations involving impermissibly high levels of gas loads.
- Operations with impermissibly high fore-vacuum pressure.
- Operations with improper gas modes.
- Operations involving too high levels of heat radiation power (see Section 9, “Technical Data”).
- Operating the pump in environments which require a protection class superior to IP 30.
- The use of other power units or accessories which are not named in this manual or which have not been agreed by the manufacturer.
- The connection to power units with earthing of a direct voltage pole.

Improper use will cause all claims for liability and guarantees to be forfeited.
3. Installation

3.1. Preparations For Installation

BEWARE

Do not carry out any unauthorised conversions or alterations to the turbopump.

- The maximum permissible rotor temperature of the pump is 90 °C. If the vacuum chamber or parts in the vacuum chamber are heated must be fitted if necessary, suitable shielding in the vacuum chamber before the turbopump (constructional suggestions available on request).
- Only remove the blank flange from the high and fore-vacuum side immediately before connection.
- On Turbopumps TMH 261/TMU 261 the lubricant reservoir is already fitted and filled.
- Where magnetic fields of > 6 mT are involved suitable shielding must be provided (available on request).
- If the pump is baked out, the heating sleeve and the body of the pump must be insulated to prevent burns from accidental contact.
- In the event of a sudden standstill of the rotor, torques of up to 750 Nm can arise and these must be taken up by the turbopump and frame. Pumps must be anchored as follows:
 - ISO flange with 4 bracket screws, or
 - CF flange with the complete set of M8 screws, or
 - Underside of the pump with 4 screws M8, screws quality 8.8.
- For operating the pump air or water cooling is necessary.

Abbreviations on the rating plate of the pump

Suffix “P”: Pumps with the designation TMH/TMU 261 P have been designed for the connection of purge gas (see Section 3.7.).

<table>
<thead>
<tr>
<th>Feature</th>
<th>TMH 261</th>
<th>TMU 261</th>
</tr>
</thead>
<tbody>
<tr>
<td>High vacuum flange</td>
<td>ISO-K</td>
<td>CF-F</td>
</tr>
<tr>
<td>High vacuum seal</td>
<td>Viton</td>
<td>Metal</td>
</tr>
<tr>
<td>Attainable final pressure</td>
<td>< 1 · 10^{-9} mbar (without baking-out)</td>
<td>< 5 · 10^{-10} mbar (with baking-out)</td>
</tr>
</tbody>
</table>

3.2. Installing The Pump, Connecting The High Vacuum Side

The utmost cleanliness must be observed when fitting all high vacuum parts. Unclean components prolong the pumping time.

PLEASE NOTE

Using the splinter shield

The use of a splinter shield in the high vacuum flange protects the turbopump against foreign bodies coming from the vacuum chamber but does reduce the volume flow rate of the pump by approximately 15%.

For fitting splinter shields please refer to “Fitting the splinter shield”

The high vacuum side can be flanged directly to the vacuum chamber or via a bellows or a vibration compensator from PFEIFFER (please see “Accessories”).

Connecting via a bellows

If the high vacuum side is to be flanged via a bellows, the turbopump must be secured for example via the holes on the underside of the turbopump must be secured for example via the holes on the underside of the pump. The fastening must be able to withstand the torque referred to in Section 3.1..

Connecting via a PFEIFFER vibration compensator (accessory)

The maximum permissible temperature at the vibration compensator is 100 °C.

Where a PFEIFFER vibration compensator is in use, a freely suspended turbopump can be flanged onto the vacuum chamber. Additional fastening is unnecessary.
Directly Flanging The Pump
The turbopump can be flanged onto the vacuum chamber vertically (0°) up to an angle of 90° maximum.

CAUTION

The fore-vacuum flange must always point downwards.

Permissible installation positions for the turbopump

11 Vacuum chamber

Installation position with oil-sealed backing pump

11 Vacuum chamber

CAUTION

The maximum loading capacity of the high vacuum flange is 500 N (equivalent to 50 kg). Assymetric loading on the high vacuum flange must be avoided.

With horizontal pump installation and oil-sealed backing pumps (e.g. rotary vane pumps) the fore-vacuum flange of the turbopump must be aligned vertically downwards (maximum deviation ±20°), otherwise the turbopump could become dirty.

3.3. Connecting The Fore-Vacuum Side

Backing pump: Vacuum pressure ≤ 5 mbar

Recommendation: Oil-Free Diaphragm Pump or Rotary Vane Vacuum Pumps from the PFEIFFER range (note installation position, turbopump, see Section 3.2).

Connecting the backing pump

All connections of the fore-vacuum line: with the usual small flange components or hose screw connections.

CAUTION

Be sure to conduct away the exhaust gases from the backing pump. Do not reduce the free cross section of the fore-vacuum flange with following components.

The exhausted process gases and vapours can represent a health hazard and can also be environmentally damaging. Comply with all gas manufacture’s safety instructions.

- With rigid pipe connections: fit a bellows in the connecting line to reduce vibration.
- The electrical connection of the backing pump is made via a relay box whose control line is connected to “FV PUMP” on the TC 600.

Please refer to Operating Instructions PM 800 030 BN for details on the relay box, backing pump and its installation.

Fitting The Splinter Shield (Accessory)

Insert the splinter shield in the high vacuum flange in such a way that the corrugation of the strainer points outwards.

- Bend the clamping lugs slightly outwards so that subsequently the splinter shield is seated firmly in the high vacuum flange (to avoid noise).
- Insert the splinter shield in the high vacuum flange while pressing the clamping lugs slightly inwards.
- Press the outer ring of the splinter shield up to the limit stop point in the high vacuum flange.

Inserting the splinter shield

12 Splinter shield
12a Clamping lug

Permissible installation positions for the turbopump

11 Vacuum chamber

Installation position with oil-sealed backing pump

11 Vacuum chamber

CAUTION

No forces from the piping system must be allowed to act on the pump where turbopumps are anchored. Suspend or support all pipes to the turbopump.
3.4. Connecting The Cooling Unit
The Turbopumps TMH 261/TMU 261 must be water or air cooled.
Air cooling may only be used where the ambient temperature is < 35 °C.

Use and installation:
- For water cooling please refer to Operating Instructions PM 800 546 BN.
- For air cooling please refer to Operating Instructions PM 800 543 BN.

3.5. Connecting The Venting Valve
The venting valve provides automatic venting in the event of a power failure and switching off.

Fitting the venting valve
- Unscrew the venting screw from the venting connection of the turbopump.
- Screw in venting valve with seal (USIT ring) on hexagonal SW 14.

Electrical connection
- Plug control lead 42a into the connection “VENT” of the TC 600 (8) on the turbopump.

The venting mode of the venting valve is selected via the DCU or Serial Interface RS 485.

CAUTION
The maximum pressure at the venting valve is 1.5 bar absolute.

Please refer to Operating Instructions PM 800 507 BN for details on Venting Valve TVV 005.

3.6. Connecting The Casing Heating Unit
The attainment of final pressures is accelerated when turbopumps and vacuum chambers are baked out.
Baking out is only practical on pumps with stainless steel casings (TMU pumps). On account of their aluminium casings, the temperatures attainable on TMH pumps are not high enough.
The heating duration is dependent on the degree of dirt and on the required final pressure level. The heating duration should be at least 4 hours.

Where casing heating is involved the turbopump must be water cooled.

BEWARE
High temperatures are generated when turbopumps and vacuum chambers are baked out. There is a danger of burns resulting from touching hot parts, even after the casing heating has been switched off. Ideally, the heating sleeve, pump casing and vacuum chamber should be insulated during installation. Do not touch the heating sleeve, pump casing and vacuum chamber during the baking out process.

Please refer to Operating Instructions PM 800 542 BN for details on the casing heating unit and its installation.

3.7. Connecting The Sealing Gas Valve
Pumps with the designation TMH 261 P/TMU 261 P (please see the rating plate) have been designed for the connection of sealing gas.
To protect the pump, particularly where corrosive or dust producing processes are involved, it is necessary to use sealing gas.
Connection is made via the sealing gas valve (please see “Accessories”).

Connecting the sealing gas valve
- Plug control lead 66a into the connection “66” of the TC 600 (8) on the turbopump.

Please refer to Operating Instructions PM 800 229 BN for details on installing the sealing gas valve and adjusting the sealing gas flow.
3.8. Connecting The Electronic Drive Unit TC 600

The turbopump and the Electronic Drive Unit TC 600 are connected and together form a single unit. Connecting cable 8a has to be ordered in wanted length separately (see "Accessories").

- Unscrew screw with tooth lock 8c from the TC 600 (above the connection X4).
- Plug the plug X4 on connecting cable 8a into the connection X4 on the TC 600 and screw in screw 8b.
- Secure plug X4 on the TC 600 with a screw and tooth lock 8c.
- Connect plug X2 on connecting cable 8a with power unit TPS 200/DCU 200 ("Accessories") on connection X2.
- Using screws and toothlock 8c (two pieces, included with the cable consignment) secure plug X2 to power unit 105.

Once operations voltage has been supplied, the TC 600 performs a self test on the supply voltage. The supply voltage for Turbomolecular Pumps TMH/TMU 261 is 48 V DC ±5% in accordance with EN 60 742.

If the turbopump is being operated with the Operations And Display Unit DCU 001/200, remote plug 8d should be disconnected. Connection should be carried out in accordance with Operating Instructions PM 800 477 BN.

3.9. Installing The Power Unit

Voltage may only be supplied with the PFEIFFER power units (Accessory). The use of other power units requires the express agreement of the manufacturer and equalization with the valid specification (power unit specifications available on request).

Please refer to Operating Instructions PM 800 521 BN for details on Power Unit TPS 200.
3.10. Connecting The Remote Control Unit

Remote control options for various functions are provided with the connection “REMOTE” on the TC 600 via the 10 pole screw connector plug (maximum cable cross section 0.14-1.5 mm²/connection). Shielded cable should be used. Shielding is with the cable clamp on the plug side of the TC 600 connected to the TC casing.

The inputs 2-6 are activated by connecting them to the + 24 V on pin 1 (active high) (please see Section 3.12. “Connection Diagram”).

Pin occupancy and remote plug functions
(please see following table).

> **CAUTION**
> When connecting supply voltage, the turbopump is started.
> **On delivery:**
> Pin 1, Pin 2, Pin 3 and Pin 4 are bridged in the mating plug.

<table>
<thead>
<tr>
<th>Pin nr.</th>
<th>Input open (low)</th>
<th>Input closed (high) on + 24 V (pin 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+24 V</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>venting blocked (see Section 3.5.)</td>
<td>venting released (see Section 3.5.)</td>
</tr>
<tr>
<td>3</td>
<td>motor, turbopump off</td>
<td>motor, turbopump on: the turbopump is driven, current flows through the motor coils</td>
</tr>
<tr>
<td>4</td>
<td>pumping station off</td>
<td>pumping station on: the turbopump is driven, backing pump is started via the relay box</td>
</tr>
<tr>
<td>5</td>
<td>heating off</td>
<td>heating on: the heating is switched on once the rotation speed switchpoint is attained and off when the rotation speed switchpoint is unattained</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>reset: by supplying a pulse (T < 2s) with an amplitude of 24 V a malfunction acknowledgement can be processed</td>
</tr>
<tr>
<td>6</td>
<td>standby off</td>
<td>standby on: pump is accelerated to 66% of its nominal rotation speed</td>
</tr>
<tr>
<td>7</td>
<td>rotation speed setting mode off</td>
<td>the rotation speed can be changed by feeding a PWM signal to this pin or via Serial Interface RS 485 (see Section 4.7. “Rotation Speed Setting Mode”)</td>
</tr>
<tr>
<td>8</td>
<td>Output (low)</td>
<td>Output (high) rotation speed switchpoint attained; output can be loaded with 24 V/50 mA</td>
</tr>
<tr>
<td></td>
<td>rotation speed switchpoint not attained</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Output (low)</td>
<td>Output (high) malfunction-free operations output can be loaded with 24 V/50 mA</td>
</tr>
<tr>
<td></td>
<td>Collective malfunction message;</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Mass (ground)</td>
<td>---------</td>
</tr>
</tbody>
</table>
3.11. Connecting The Serial Interface RS 485

An external operating component (DCU 001 or DCU 200) or an external computer can be connected via the connection “RS 485” on the TC 600 with the use of a shielded 8 pole modular connecting cable contained with the delivery.

The serial interface is galvanically and safely separated from the maximum supply voltage from the TC 600.

Connection

<table>
<thead>
<tr>
<th>Designation</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serial interface type:</td>
<td>RS 485</td>
</tr>
<tr>
<td>Baud rate:</td>
<td>9600 Baud</td>
</tr>
<tr>
<td>Data file word length:</td>
<td>8 bit</td>
</tr>
<tr>
<td>Parity:</td>
<td>no parity</td>
</tr>
<tr>
<td>Start bits:</td>
<td>1</td>
</tr>
<tr>
<td>Stop bits:</td>
<td>1..2</td>
</tr>
</tbody>
</table>

The electrical connections in the TC 600 are optically decoupled.

Connecting The RS 485

Connection to a fixed bus system

- Connect all units with D+ (pin 5 / RS 485) and D- (pin 7 / RS 485) to the bus.
- The bus must be closed at both ends.

The connections should be made in accordance with the specification of the Serial Interface RS 485.

Please refer to Operating Instructions PM 800 488 BN for detailed operating procedures and electrical data in respect of the Serial Interface RS 485.

Profibus DP Gateway TIC 250 is available (accessory) for connecting an Electronic Drive Unit TC 600 to a Profibus DP. Please refer to the respective Operating Instructions PM 800 599 BN for detailed information on the operation of the TIC 250.

PLEASE NOTE

Only SELV may be connected to the Serial Interface RS 485.

All switched on remote functions have priority over the serial interface functions.

Please refer to Operating Instructions PM 800 488 BN for detailed operating procedures and electrical data in respect of the Serial Interface RS 485.

It is possible to connect an RS 232 (e.g. PC) via a level converter (please see “Accessories”).
4. Operations

4.1. Before Switching ON

Sections 4.1. to 4.3. refer only to operating the pump in its condition on delivery, without the DCU operating unit. The bridges “venting release”, “motor, TMP ON” and “pumping station ON” are fitted in the remote control plug.

Please refer to Section 4.6. regarding the switching on with the Operating And Display Control Unit DCU.

⚠️ Turbopump rotors rotate at high speed. When the high vacuum flange is open there is a danger of injury and of damage to the pump caused by objects falling into the pump. Therefore never operate the pump with open high vacuum flange.

- With water cooling: Open cooling water supply and check flow.
- With connecting cable 8a (“Accessory”) connect the TC 600 and Power Unit TPS 200 on X2 (please see Section 3.8.).

Please note:
The following pre-settings have been programmed:
- Running up time 8 min
- Rotation speed switchpoint 80%
- Automatic venting 50%

These settings can only be altered via Serial Interface RS 485 (DCU or PC); please refer to the respective operating instructions.

4.2. Switching ON

- Switch on the turbopump with switch S1 on the power unit.
 - With air cooling the cooling fan is also switched on via Electronic Drive Unit TC 600.
 - Once the self test has been successfully completed on the TC 600 (duration approximately 10 seconds), both the turbopump and the backing pump (if connected) begin operating.

Rear panel, TPS 200

S1 ON/OFF switch
X1 Mains connection
X2 Connection TC 600
F1 Fuse
F2 Fuse

⚠️ Take care when pumping hazardous gases and observe the safety precautions of the gas manufacturer.
4.3. Switching OFF And Venting

Before coming to rest after switching off, the turbopump must be vented in order to prevent contamination.

- Switch off both turbopump and backing pump with switch S1 on the power unit.

Venting

There are three possibilities to vent turbopump:

- Manual venting with the use of the venting screw (status on delivery).
- Venting with the venting valve which is selectable via the remote control (please see Section 4.7.), or via the DCU (see Operating Instructions, “Pumping Operations With The DCU”, PM 800 547 BN).
- Venting in two stages when the vacuum chamber should be vented as quickly as possible. First stage: venting with a pressure increase rate of 15 mbar/s for 20 seconds. Second stage: venting with an optionally large venting valve.

The valve cross-section for a venting rate of 15 mbar/s must be compatible with the size of the vacuum chamber. Where small vacuum chambers are involved, the PFEIFFER Venting Valve TVF 005 can be used for first stage venting.

- Shut off water supply.

4.4. Gas Type Dependent Operations

Where high level gas loads and rotation speeds are involved, the resulting friction subjects the rotor to the effect of great heat. To avoid over-heating, a power rotation speed characteristic line is implemented in the TC 600; this ensures that where maximum gas loads are involved, the pump will operate at any rotation speed without the danger of damage arising.

The maximum power is dependent on the type of gas. Two characteristic lines are available for any type of gas in order to fully exploit the power potential of the pump:

- “Gas-Mode 0” for gases with molecular mass ≥ 40 as, for example, Argon;
- “Gas-Mode 1” for all lighter gases.

- Set the applicable gas mode on the TC 600 via the DCU (please refer to Operating Instructions “Pumping operations with The DCU” PM 800 547 BN).
 Works setting: Gas mode 0

Pumping gases with molecular mass ≥ 40 with the incorrect gas mode can cause damage to the pump.

For the vertex of the power characteristic line please refer to Section 9. Technical Data.

Maximum power is applied when the pump starts in order to limit the time required. Once the set rotation speed is attained, switching to the selected power characteristic line is automatic.

If the gas dependent maximum power is exceeded, the rotation speed is reduced until equilibrium between the permissible power and gas friction is attained.

The power limitation serves to protect the pump against thermal overloading. In order to avoid rotation speed fluctuations it is recommended to set, in rotation speed setting mode, the equilibrium frequency or a somewhat lower frequency.

There can be types of pump whereby there is no differentiation between the two “gas modes” settings.

4.5. Shutting Down For Longer Periods

If aggressive or hazardous gases are pumped there is a danger of personal injury resulting from coming into contact with process gases. Before removing a turbopump from the system, first:

- Vent the turbopump with a neutral gas or dry air.
- Ensure that there is no residual process gas in the system nor in the feeder lines.

If the turbopump is to be shut down for more than one year:

- Remove turbopump from the system.
- Change the lubricant reservoir (see Section 7.1.).
 Please note: Lubricant TL 011 should not be used when there have been no operations for 2 years.
- Close the high vacuum flange and evacuate the turbopump via the fore-vacuum flange.
- Vent turbopump via the venting connection with nitrogen or dry air.
- Close fore-vacuum and venting connection by blank flanging.
- Place the pump vertically on its rubber feet.
- In rooms with moist or aggressive atmospheres, the turbopump must be air-sealed in a plastic bag together with a bag of desiccant, e.g silicagel.

If the pump has been shut down for 3 years, the bearing must be changed (please contact PFEIFFER Service).
4.6. Operations With The DCU 001/DCU 200

Operations with the DCU 001 or DCU 200 should be carried out in accordance with the relevant Operating Instructions PM 800 477 BN (DCU description) and PM 800 547 BN (operating the pump with the DCU).

Where operations with the DCU are involved, the remote plug 8d on the TC 600 (please refer to Section 2.1.) should be disconnected.

4.7. Operations With The Remote Control Unit

(please refer to the table in Section 3.10.).
Remote control operations can be performed via the connection with the designation “REMOTE” on the TC 600.
The connection is via a 10 pole screwed connector plug with the following occupancy:
1 – + 24 V
2 – Input, venting release
3 – Input, turbopump motor
4 – Input, pumping station
5 – Input, heating/reset
6 – Input, standby
7 – Input, PWM
8 – Switching output 1: Rotation speed switchpoint
9 – Switching output 2: Collective malfunction message
10 – Mass
Inputs 2 - 6 are activated if they are connected with the 24 V on pin 1 (active high).

On delivery there is a bridge between Pin 1, Pin 2, Pin 3 and Pin 4 on the TC 600 mating plug.
Once operating voltage has been supplied and on successful completion of the self-test on the TC 600, the turbopump and any possible connected backing pump is started.

PLEASE NOTE

Motor, Turbopump
When the pumping station is switched on and once the self test has been successfully completed (duration approximately 10 seconds), the turbopump is set in operation.
During operations, the turbopump can be switched on and off while the pumping station is switched on.

Pumping Station
Any connected pumping station components are started up (e.g. backing pump, venting valve, air cooling) and with simultaneous activation of the input "motor, turbopump" the turbopump is set in operation once the self test has been successfully completed (duration approximately 10 seconds).

Heating/Reset
Heating (optional)
Once the rotation speed switchpoint is attained the heating unit is switched on; when the rotation speed switchpoint is fallen below the heating unit is switched off.

Reset
The heating input has two functions (please see Section 3.10., point 5 “Reset”).

Standby
The pump can be operated optionally at 66% of its nominal rotation speed (standby ON) or at its nominal rotation speed (standby OFF).

Rotation Speed Setting Mode Via Input PWM
The supply of pulse width modulated signals (PWM) with a ground frequency of 100 Hz ±20% with an amplitude of maximum 24 V and a key ratio of 25-75% enables the rotation speed to be set in the range 20-100% of the nominal rotation speed.

![Rotation Speed Setting Mode Via Input PWM Diagram](image)

If no signal is present the pump accelerates up to its final rotation speed. A PWM adapter box for rotation speed setting operations for the turbopump is available as an option (please see “Accessories”).

Venting Release (Optional)

Automatic venting:
On the turbopump or pumping station being switched off and when the venting frequency of 50% of the final rotation speed (500 Hz) is no longer attained, the venting valve is opened for 3,600 seconds (1 hour).
In the event of a mains power failure the venting valve opens if the venting frequency falls below 50% of the final rotation speed and shuts when 30% of the final rotation speed is attained. When mains power is restored the venting process is interrupted.

Venting OFF:
Venting does not take place.

Other venting modes:
Other venting modes can be selected via the DCU.

CAUTION

10 ms (1 ± 20%)
100 Hz (1 ± 20%)

100%*f_fend
20%*f_fend
0

T_PWM = 10ms (1 ± 20%)
f_PWM = 100Hz (1 ± 20%)

T_PWM = 25%
T_PWM = 75%

max. +33V
min. +13V
max. +7V
min. -33V
Switching Outputs

Switching outputs 1 and 2 can be loaded with a maximum 24 V / 50 mA per output. The following functions are assigned to the switching outputs:

Switching output 1: Active high when the rotation speed switchpoint is attained. The switchpoint for the turbopump is set at 80% of the nominal rotation speed. It can be used, for example, for a message “pump ready to operate”.

Switching output 2: Active low with a malfunction - collective malfunction message

The connection of a relay is made between pin 10 (mass) and the respective switching output pin 8 or pin 9 (see Section 3.12. Connections Diagram).

5. Monitoring Operations

5.1. Operations Display Via LED

Certain operations modes of the turbopump and the TC 600 can be ascertained via the two integrated LEDs located on the front panel of the TC 600. The following operations modes are displayed:

<table>
<thead>
<tr>
<th>LED</th>
<th>Cause</th>
</tr>
</thead>
</table>
| Glows green | – power unit OK
 | – Function “pumping station ON” carried out |
| Flashes green | – power unit OK
 | – Pumping station OFF |
| Blinks green | – Mains power supply failure |
| Glows red | – Collective malfunction
 | (for example, run-up time error, over-temperature, turbopump or TC 600)
 | – Switching output 2 active (low) |
| Blinks red | – Warning
 | (e.g. supply voltage short circuit to earth, mains power supply failure) |

Differentiated malfunction and warning signals are only possible with the use of the DCU.

5.2. Turbopump Temperature Management

Where impermissible motor temperatures are involved or the temperature of the TC 600 casing is too high, the motor current is reduced. This can lead to dipping below the set rotation speed switchpoint and results in the turbomolecular pump being switched off. LED on the TC 600 glows red: Collective malfunction.
6. What To Do In Case Of Breakdowns?

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Causes</th>
<th>Remedy</th>
</tr>
</thead>
</table>
| Pump doesn’t start; None of the integrated LEDs glow on the TC 600 | • Power supply interrupted
• Incorrect operations voltage supplied
• Pins 1-3 and 1-4 on the remote plug not connected
• No supply of operations voltage
• Defect TC 600
• Reduction in the voltage in the cable | • Check fuse in the power unit
• Check plug contacts on the mains power unit
• Check power unit feeder line
• Check voltage on the power unit (48 V DC) at connection X2
• Supply correct operations voltage
• Connect pins 1-3 and 1-4 on the remote plug
• Check plug contacts on the power unit
• Inform PFEIFFER Service of need for repair
• Use suitable cable |
| Pump doesn’t attain nominal rotation speed within the set run-up time
Pump cuts out during operations | • Fore-vacuum pressure too high
• Leak or too much gas
• Rotor sluggish caused by defective bearing
• TC run-up time too short
• Thermal overloading caused by – Water flow insufficient
– Insufficient air supply
– Fore-vacuum pressure too high
– Ambient temperature too high | • Check backing pump function
• Check seals
• Seek leak and repair
• Reduce supply of process gas
• Check bearing (noises?): Inform PFEIFFER Service
• Set longer start-up time with the DCU or PC
• Ensure free flow
• Ensure adequate air supply
• Reduce fore-vacuum pressure
• Reduce ambient temperature |
| Pump doesn’t attain final pressure | • Pump dirty
• Leak in vacuum chamber, lines or pump | • Bake out pump
• If seriously contaminated: Request PFEIFFER Service to clean
• Seek leak starting with vacuum chamber
• Repair leak |
| Unusual operating noises | • Bearing damaged
• Rotor damaged
• Splinter shield (if fitted) not seated firmly | • Inform PFEIFFER Service of need for repair
• Inform PFEIFFER Service of need for repair
• Check seat of splinter shield (see Section 3.2.) |
| Red LED on the TC 600 glows | • Collective malfunction | • Reset via mains OFF/ON or remote pin 5
• Different malfunction display with the DCU possible¹ ¹) |
| Red LED on the TC 600 flashes | • Warning through: – Mains power failure
– Supply voltage short circuit to earth | • Different warning message with the DCU possible¹ ¹)
• Check power unit voltage
• Check power unit mains connection
• Check power unit voltage for short circuit to earth |

¹) Without a DCU inform PFEIFFER Service to check the cause of trouble.
No liability for personal injury nor material damage will be accepted for damages and operational interruptions which have been caused by improper maintenance; in addition, all guarantees become invalid.

You can change the lubricant reservoir yourself (please see Section 7.1.).

For all other maintenance and repair work please get in touch with your local PFEIFFER Service Center.

Apply no mechanical stress to the TC 600.

7.1. Replacing The Lubricant Reservoir

The lubricant reservoir should be replaced at least once a year. Where extreme operating conditions or unclean processes are involved, the replacement interval should be checked with your PFEIFFER Service Center.

- Switch off the turbopump, vent to atmospheric pressure (see Section 4.3.) and allow to cool as necessary.
- If necessary, remove the turbopump from the system.
- Unscrew locking cover 90 on the underside of the pump with a big screwdriver; take care with the O-ring 91.
- Lever out the lubricant reservoir 92 with the help of two screwdrivers.

BEWARE Lubricants can contain toxic substances from the medium pumped. Lubricant must be disposed of in accordance with the respective regulations. Safety instructions data sheet for the lubricant on request.

CAUTION

- Clean off any dirt on the pump and locking cover with a clean, fluff-free cloth.
- Insert new lubricant reservoir 92 which is already filled with Lubricant TL 011 up to the O-ring 93 in the pump.
- Screw in locking cover 90 with O-ring 91. The lubricant reservoir is brought into the correct axial position with the locking cover.
8. Service

Do Make Use Of Our Service Facilities
In the event that repairs are necessary a number of options are available to you to ensure any system down time is kept to a minimum:
– Have the pump repaired on the spot by our PFEIFFER Service Engineers;
– Return the pump to the manufacturer for repairs;
– Replace the pump.

Local PFEIFFER representatives can provide full details.

Please take into account that where PFEIFFER Service replacement service is involved the standard operating parameters are always pre-set. If your application requires different parameters, please modify accordingly.

The turbopump and the Electronic Drive Unit TC 600 form a single unit and must therefore be returned complete for repair purposes. Before returning the unit it should be ensured that the power unit is not the cause of the malfunction (please checking the power unit).

Before Returning:
⇒ Dismantle all accessories.
⇒ Please attach a clearly visible notice “Free of harmful substances” (both on the unit and also on the delivery note and any accompanying letters).
“Harmful substances” are substances and preparations as defined in the current, local, dangerous substances regulations; in the U.S.A. as “materials in accordance with the Code of Federal Regulations (CFR) 49 Part 173.240 Definition and Preparation”.
We will carry out the decontamination and invoice this work to you if you have not attached this note. This also applies where the operator does not have the facilities to carry out the decontamination work. Units which are contaminated microbiologically, explosively or radioactively cannot be accepted as a matter of principle.

Fill Out The Declaration Of Contamination
⇒ In every case the “Declaration of Contamination” must be completed diligently and truthfully.
⇒ A copy of the completed declaration must accompany the unit; any additional copies must be sent to your local PFEIFFER Service Center.
Please get in touch with your local PFEIFFER representatives if there are any questions regarding contamination.

Decontaminate units before returning or possible disposal. Do not return any units which are microbiologically, explosively or radioactively contaminated.

Returning Contaminated Units
If contaminated have to be returned for maintenance/repair, the following instructions concerning shipping must be followed:
⇒ Neutralise the pump by flushing with nitrogen or dry air.
⇒ Seal all openings to the air.
⇒ Seal pump or unit in suitable protective foil.
⇒ Ship units only in appropriate transport containers.

Repair orders are carried out according to our general conditions of sale and supply.

If repairs are necessary, please send the pump together with a short damage description to your nearest PFEIFFER Service Center.

Contact Addresses And Telephone Hotline
Contact addresses and telephone numbers can be found on the back cover of these operating instructions.
9. Technical Data

<table>
<thead>
<tr>
<th>Feature</th>
<th>Unit</th>
<th>TMH 261</th>
<th>TMU 261</th>
<th>TMTMH 261 P</th>
<th>TMU 261 P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection nominal diameter</td>
<td></td>
<td>DN 100</td>
<td>DN 100</td>
<td>DN 100 CF-K</td>
<td>DN 100 CF-F</td>
</tr>
<tr>
<td>Inlet</td>
<td>ISO-K</td>
<td>DN 25</td>
<td>DN 100</td>
<td>ISO-K</td>
<td>DN 100 CF-F</td>
</tr>
<tr>
<td>Outlet</td>
<td>CF-F</td>
<td>G 1/8"</td>
<td>DN 25</td>
<td>F/G</td>
<td>G 1/8"</td>
</tr>
<tr>
<td>Venting connection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal rotation speed</td>
<td>1/min</td>
<td>60 000</td>
<td>60 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standby rotation speed</td>
<td>1/min</td>
<td>40 000</td>
<td>40 000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start-up time</td>
<td>min</td>
<td>1.6</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noise level</td>
<td>dB (A)</td>
<td>< 50</td>
<td>< 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final pressure, backing pump</td>
<td>mbar</td>
<td>< 5</td>
<td>< 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum permissible rotor temperature</td>
<td>°C</td>
<td>90</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permissible heat radiation power</td>
<td>W</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume flow rate for Nitrogen N2</td>
<td>l/s</td>
<td>210</td>
<td>210</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium He</td>
<td>l/s</td>
<td>220</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen H2</td>
<td>l/s</td>
<td>190</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression ratio for N2</td>
<td>> 1 · 10^8</td>
<td></td>
<td></td>
<td>> 1 · 10^8</td>
<td></td>
</tr>
<tr>
<td>Helium He</td>
<td>3 · 10^5</td>
<td></td>
<td></td>
<td>3 · 10^5</td>
<td></td>
</tr>
<tr>
<td>Hydrogen H2</td>
<td>1.3 · 10^4</td>
<td></td>
<td></td>
<td>1.3 · 10^4</td>
<td></td>
</tr>
<tr>
<td>Maximum fore-vacuum pressure for Nitrogen N2</td>
<td>mbar</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium He</td>
<td>mbar</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen H2</td>
<td>mbar</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum gas throughput 1) With water cooling N2 mbar l/s</td>
<td>9</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium He</td>
<td>mbar l/s</td>
<td>12</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen H2</td>
<td>mbar l/s</td>
<td>60</td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum gas throughput at intake pressure of 0.1 mbar 3) N2</td>
<td>mbar l/s</td>
<td>7</td>
<td>5.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helium He</td>
<td>mbar l/s</td>
<td>6</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen H2</td>
<td>mbar l/s</td>
<td>3.5</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertex power characteristics line 4) A W / Hz</td>
<td>170/1000</td>
<td>170/1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B W / Hz</td>
<td>170/1000</td>
<td>170/1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C W / Hz</td>
<td>170/1000</td>
<td>170/1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D W / Hz</td>
<td>170/760</td>
<td>170/1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final pressure 5) With rotary vane pumps mbar</td>
<td>< 5 · 10^-10</td>
<td>< 5 · 10^-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With diaphragm pumps mbar</td>
<td>< 1 · 10^-8</td>
<td>< 1 · 10^-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lubricant</td>
<td>TL 011</td>
<td>TL 011</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum cooling water</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>consumption with water at 15 °C</td>
<td>l/h</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling water temperature</td>
<td>°C</td>
<td>5 - 25</td>
<td>5 - 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permissible ambient temperature with air cooling</td>
<td>°C</td>
<td>0 - 35</td>
<td>0 - 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating power consumption</td>
<td>W</td>
<td>60</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>kg</td>
<td>5.3</td>
<td>7.3</td>
<td>5.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Permissible magnetic field</td>
<td>mT</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating voltage</td>
<td>VDC</td>
<td>48 ± 5%</td>
<td>48 ± 5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration 6) / max. current consumption</td>
<td>A</td>
<td>4.1 / 4.8</td>
<td>4.1 / 4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration 6) / max. power</td>
<td>W</td>
<td>170 / 200</td>
<td>170 / 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protection class 7)</td>
<td>IP 30</td>
<td>IP 30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relative humidity</td>
<td>%</td>
<td>5-85 non-condensing</td>
<td>5-85 non-condensing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Measured with a rotary vane pump 10 m³/h; higher throughputs with reduced rotation speed.
2) Rotation speed of pump may drop below the nominal rotation speed.
3) For gas type characteristic lines please refer to section 4.4.
4) In accordance with German Industrial Standard 28428 the 48 hours after baking out.
5) At maximum gas throughput.
6) Protection class IP 54 is afforded for the Electronic Drive Unit TC 600 by retro-fitting a cover plate (accessory).
1) Sealing gas valve only for “P” version turbopumps (see rating plate)
10. Spare Parts

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Description</th>
<th>Pieces</th>
<th>Size</th>
<th>Number</th>
<th>Comments</th>
<th>Ordering Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Rubber feet</td>
<td>4</td>
<td></td>
<td>P 3695 700 ZE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8d</td>
<td>Remote plug</td>
<td>1</td>
<td></td>
<td>P 0920 668 E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>USIT ring</td>
<td>1</td>
<td></td>
<td>P 3529 133 -A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>O-ring</td>
<td>1</td>
<td>Vi 38 x 3</td>
<td>P 4070 621 PV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>Lubricant reservoir</td>
<td>1</td>
<td></td>
<td>PM 063 265 -T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spare parts

![Spare parts diagram]

C40-777/1

17

8d

91 92

6
11. Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Size</th>
<th>Number</th>
<th>Comments/ Operating Instructions</th>
<th>Order Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Components for cooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dirt trap</td>
<td>R 3/8”</td>
<td>P 4161 300 2R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recycled Water Cooling Unit TZK 400</td>
<td>230 V, 50 Hz</td>
<td>PM Z01 245</td>
<td></td>
<td>PM 800 369 BN</td>
</tr>
<tr>
<td>Air cooling</td>
<td>24 V DC</td>
<td>PM Z01 252</td>
<td></td>
<td>PM 800 543 BN</td>
</tr>
<tr>
<td>Water cooling</td>
<td></td>
<td>PM 016 040 BT</td>
<td></td>
<td>PM 800 546 BN</td>
</tr>
<tr>
<td>Components for venting</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venting Valve TVF 005, without current closed</td>
<td>24 V DC</td>
<td>PM Z01 135</td>
<td>Water cooling required</td>
<td>PM 800 507 BN</td>
</tr>
<tr>
<td>Drying Unit TTV 001 (filled with zeolite)</td>
<td></td>
<td>PM Z00 121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venting flange</td>
<td>DN 10 ISO-KF</td>
<td>PM 033 737 -T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Components for heating</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casing heating</td>
<td>230 V, Schuko plug</td>
<td>PM 041 903 -T</td>
<td>Water cooling required</td>
<td>PM 800 542 BN</td>
</tr>
<tr>
<td></td>
<td>208 V, UL-plug</td>
<td>PM 041 904 -T</td>
<td></td>
<td>PM 800 542 BN</td>
</tr>
<tr>
<td></td>
<td>115 V, UL-plug</td>
<td>PM 041 905 -T</td>
<td></td>
<td>PM 800 542 BN</td>
</tr>
<tr>
<td>Other accessories</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connecting cable TC 600 – TPS/DCU</td>
<td>3 m</td>
<td>PM 051 103 GT</td>
<td>Other lengths on request</td>
<td></td>
</tr>
<tr>
<td>Power Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– TPS 200; for fitting to walls</td>
<td></td>
<td>PM 041 813 -T</td>
<td></td>
<td>PM 800 521 BN</td>
</tr>
<tr>
<td>or standard runners</td>
<td></td>
<td>PM 041 819 -T</td>
<td></td>
<td>PM 800 521 BN</td>
</tr>
<tr>
<td>– DCU 200; 19” insert unit</td>
<td></td>
<td>PM C01 695</td>
<td></td>
<td>PM 800 477 BN</td>
</tr>
<tr>
<td>Operating and Display Control Unit (DCU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mains cable</td>
<td>230 V</td>
<td>P 4564 309 ZA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schuko plug</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UL plug</td>
<td>208 V</td>
<td>P 4564 309 ZF</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>115 V</td>
<td>P 4564 309 ZE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating and Display Control Unit DCU 001</td>
<td></td>
<td></td>
<td></td>
<td>PM 800 477 BN</td>
</tr>
<tr>
<td>Relay box, backing pump</td>
<td>5 A</td>
<td>PM 041 937 -AT</td>
<td>PT 800 020 BN</td>
<td></td>
</tr>
<tr>
<td>Relay box, backing pump</td>
<td>20 A</td>
<td>PM 041 938 -T</td>
<td>PT 800 030 BN</td>
<td></td>
</tr>
<tr>
<td>PWM adapter box</td>
<td></td>
<td>PM 051 028 -U</td>
<td></td>
<td>PM 800 563 BN</td>
</tr>
<tr>
<td>Level Converter RS 232/485</td>
<td></td>
<td>PM 051 054 -X</td>
<td></td>
<td>PM 800 549 BN</td>
</tr>
<tr>
<td>Cover plate for TC 600 (IP 54)</td>
<td></td>
<td>PM 051 327 -T</td>
<td></td>
<td>PT 800 024 BN</td>
</tr>
<tr>
<td>Profinbus DP gateway TIC 250</td>
<td></td>
<td>PM 051 257 -T</td>
<td></td>
<td>PM 800 599 BN</td>
</tr>
<tr>
<td>Vibration compensator, TMH</td>
<td>DN 100 ISO-K</td>
<td>PM 006 459-X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMU</td>
<td>DN 100 CF-F</td>
<td>PM 006 488-X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splinter shield</td>
<td>DN 100</td>
<td>PM 006 125 AX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protective grill</td>
<td>DN 100</td>
<td>PM 006 596 -R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealing ring, TMH</td>
<td>DN 100 ISO-K</td>
<td>PF 303 110 -T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collar flange with retaining ring, TMH</td>
<td>DN 100 ISO-F</td>
<td>PF 307 110 -T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cu seal (10 pieces), TMU</td>
<td>DN 100 CF</td>
<td>PF 501 410 -T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set of screws, TMU</td>
<td>DN 100 CF</td>
<td>PF 505 003 -T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sealing gas valve</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hose nipple for the sealing gas valve</td>
<td></td>
<td>PM Z01 142</td>
<td></td>
<td>PM 800 229 BN</td>
</tr>
<tr>
<td></td>
<td>DN 16 ISO-KF-10</td>
<td>PF 144 020</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When ordering accessories and spare parts please be sure to state the full part number. When ordering spare parts please state additionally the unit type and unit number (see rating plate). Please use this list as an order form (by taking a copy).
3 Water cooling
3a Cooling water connection
8 Electronic Drive Unit TC 600
8a Connecting cable, TC 600 – TPS/DCU
20 Relay box, backing pump
20a Control lead, relay box/TC 600
20b Connecting cable, backing pump
20c Mains cable
36 Air cooling
36a Control lead, air cooling/TC 600
36b Mounting bracket
36c Screw
36d Compression spring
42 Venting valve
42a Control lead, venting valve/TC 600
42b Plug
46 Heating sleeve
46a Control lead, heating unit/TC 600
46b Heating unit relay box
46c Mains cable
66 Sealing gas valve
(only for “P” version)
105 Power Unit TPS 200
105a Wall mounting plate
105b Front panel
106 Operating and Display Control Unit
DCU 200
107 Operating and Display Control Unit
DCU 001
X2 Connection TC 600
X3 Vacuum gauge connection
RS 485 Serial Interface
Declaration of Contamination of Vacuum Equipment and Components

The repair and/or service of vacuum components will only be carried out if a correctly completed declaration has been submitted. Non-completion will result in delay. The manufacturer could refuse to accept any equipment without a declaration.

This declaration can only be completed and signed by authorised and qualified staff:

1. Description of component:
 - Equipment type/model: _________________________
 - Code No.: __________________________
 - Serial No.: __________________________
 - Invoice No.: __________________________
 - Delivery Date: __________________________

2. Reason for return:

3. Equipment condition
 - Has the equipment been used? yes [] no []
 - What type of pump oil was used? __________________________
 - Is the equipment free from potentially harmful substances? yes [] no []

4. Process related contamination of equipment
 - toxic yes [] no []
 - corrosive yes [] no []
 - microbiological hazard* yes [] no []
 - explosive* yes [] no []
 - radioactive* yes [] no []
 - other harmful substances yes [] no []

*) We will not accept delivery of any equipment that has been radioactively or microbiologically contaminated without written evidence of decontamination!

Please list all substances, gases and by-products which may have come into contact with the equipment:

<table>
<thead>
<tr>
<th>Tradename Product name Manufacturer</th>
<th>Chemical name (or Symbol)</th>
<th>Danger class</th>
<th>Precautions associated with substance</th>
<th>Action if spillage or human contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Legally Binding Declaration

I hereby declare that the information supplied on this form is complete and accurate. The despatch of equipment will be in accordance with the appropriate regulations covering Packaging, Transportation and Labelling of Dangerous Substances.

Name of Organisation: __
Address: __ Post code: __________________________
Tel.: __
Fax: __ Telex: __________________________
Name: __
Job title: __
Date: __ Company stamp: __________________________
Legally binding signature: ____________________________
im Sinne folgender EU-Richtlinien:

pursuant to the following EU directives:

- Maschinen/Machinery 98/37/EG
- Elektromagnetische Verträglichkeit/Electromagnetic Compatibility 89/336/EWG
- Niederspannung/Low Voltage 73/23/EWG

Hiermit erklären wir, daß das unten aufgeführte Produkt zum Einbau in eine Maschine bestimmt ist und daß deren Inbetriebnahme so lange untersagt ist, bis festgestellt wurde, daß das Endprodukt den Bestimmungen der EU-Richtlinie 98/37/EG, Anhang II B entspricht.

Wir bestätigen Konformität mit der EU-Richtlinie über elektromagnetische Verträglichkeit 89/336/EWG und der EU-Niederspannungsrichtlinie 73/23/EWG.

We hereby certify that the product specified below is intended for installation in a machine which is forbidden to be put into operation until such time as it has been determined that the end product is in accordance with the provision of EU Directive 98/37/EEC, Annex II B.

Produkt/Product:

TMH 261 / TMU 261
TMH 261 P / TMU 261 P

Angewendete Richtlinien, harmonisierte Normen und angewendete, nationale Normen:

Guidelines, harmonised standards, national standards in which have been applied:

EN 292-1, EN 292-2, EN 294, EN 1012-2, EN 61010

Unterschrift/Signature:

(W. Dondorf)
Geschäftsführer
Managing Director

Pfeiffer-Vacuum GmbH
Berliner Strasse 43
D-35614 Asslar
Germany

Herst.l/2000
Adressen • Addresses

Argentina
AFRO S.A., Av. Belgrano 369, 1092 Buenos Aires, telephone +54 / 11 4331 5766, telefax +54 / 11 4331 3572

Australia
Sctech Australia Pty. Ltd., Suite 1B, 10-18 Cliff Street, Milsons Point, NSW 2061, telephone +61 / 2 9954 1925, telefax +61 / 2 9954 1939

Austria
Pfeiffer Vacuum Austria GmbH, Diefenbachgasse 35, A-1150 Wien, telephone +43 / 1 8941 704, telefax +43 / 1 8941 707, Service hotline: +43 / 1 8941 704

Branch Office, Czech Republic
Pfeiffer Vacuum Austria GmbH, Branch Prague Zvonařská 885 CZ-156 00 Praha 5, telephone +420/2 902 42981, telefax +420/2 579 23014

Belgium / Luxembourg
Pfeiffer Vacuum Belgium N.V./S.A., Luxemburgsurstr. 5, B-9140 Temse, telephone +32 / 3 710 5920, telefax +32 / 3 710 5929, Service hotline: +32 / 3 710 5922

Brazil
Enei Tec, Assistência Técnica e Representação S/C Ltda., Rua Bernadino de Compos, 551-Brooklyn CEP 04620-002 São Paulo, SP - Brasil, telephone +55 / 1 30 93 0034, telefax +55 / 1 30 93 3598

Chile
BERMAT S.A., Coyucaza 2283, Oficina 601 Providencia, P.O. Box 9781, Santiago, telephone +56 / 2 231 8877, telefax +56 / 2 231 4294

Colombia
Arotec Colombiana S.A., Carrera 16 No. 36-99 P.O. Box 090 862, Sante Fe de Bogota / D.C., telephone +57 / 1 288 7799, telefax +57 / 1 285 3604

Denmark
Pfeiffer Vacuum Scandinavia AB, Vesterengen 2, DK-2630 Taastrup, telephone +45 / 43 52 38 00, telefax +45 / 43 52 38 50

France
Pfeiffer Vacuum France SAS 45, rue Senouque, BP 139 F-75311 CEDEX telephone +33 / (0)1 30 83 04 00, telefax +33 / (0)1 30 83 04 04

Germany
Pfeiffer Vacuum GmbH, Berliner Strasse 43, D-35614 Asslar, telephone +49 / 6441 802 400, telefax +49 / 6441 802 399, Service hotline: +49 / 6441 802 333

Great Britain
Pfeiffer Vacuum Ltd., 2-4 Cromwell Business Centre Howard Way, Interchange Park Newport Pagnell, MK16 9DS, United Kingdom telephone +44 / 1 908 500615, telefax +44 / 1 908 500616

Greece
Analytical Instruments S.A., 1 Mantzarou St., GR-15451 Athens, telephone +30 / 10 674 8973-7, telefax +30 / 10 674 8978

Hong Kong
Pfeiffer Vacuum Asia Ltd., Units 06-07, 17/F., Workingfield Commercial Building, 408-412 Jaffe Road, Hong Kong telephone +852 2575 6688, telefax +852 2575 6993

India
Pfeiffer Vacuum India Ltd., 25-E Nicholson Road, Tarbund Secunderabad 500 009, telephone +91 / 40 775 0014, telefax +91 / 40 775 7774

Israel
ODEM Scientific Applications Ltd., 9 Hamazmera St., P.O.B. 2001 Nes Ziona telephone +972 8 938 0333, telefax +972 8 938 0334

Italy
Pfeiffer Vacuum Italia S.p.a., Via San Martino, 4 1-20078 RHO (Milano) telephone +39 / (0)1 30 83 04 04

Japan
Hakuto Co., Ltd., C.P.O. Box 25, Vacuum Scientific Instruments Division C.P.O. Box 25, Tokyo 100-91 telephone +81 / 3 32 25 8110, telefax +81 / 3 32 25 0911

Korea
Pfeiffer Vacuum Korea Ltd., 703 Ho, 653-7, Hanuk Mulru, Daejon, 305-343, telephone +82 / 42 221 0261, telefax +82 / 42 221 4422

Netherlands
Pfeiffer Vacuum Nederland BV, Veldzigt 30a, NL-9496 Balzers Föhrenweg 18, telephone +31 / 30 666 0500, telefax +31 / 30 6662794

Peru
Ing. E. Brammerz s.r.l., José Pardo 182, Apartado 173, PE-18 Miraflores, teléfono +51 / 1 445-1931

Poland

Portugal
Unis labor Lda, Taguspark Núcleo Central, sala n° 301, Estrada Cacém-Por do Salvo, P-2708 Deiras telephone +351 / 1 421 7733, telefax +351 / 1 421 7744

Singapore
APP Systems Services Pte. Ltd, 2 Corporation Road 06-14 Corporation Place, Singapore 618404, telephone +65 / 268 2024, telefax +65 / 268 6621

Spain
Tecnovac Tecnología de Vació S.L., Ronda de Poniente, 6 Bajo F, Centro Empresarial Eurowon, E-28760 Tres Cantos (Madrid) telephone +34 / 91 804 11 34, telefax +34 / 91 804 30 91

Sweden
Pfeiffer Vacuum Scandinavia AB, Johanneslundsvägen 3 S-194 81 Upplands Väsby telephone +46 / 8 590 748 10, telefax +46 / 8 590 748 88

Switzerland
Pfeiffer Vacuum Schweiz S.A., Förrlibunktstrasse 30, CH-8005 Zürich telephone +41 / 1 444 2255, telefax +41 / 1 444 2266

South Africa
Labotec Pty Ltd., P.O. Box 6553, Halfway House 1805 Midrand telephone +27 / 11 315 5434, telefax +27 / 11 315 5882

Taiwan
HAKUTO Taiwan Ltd. Hsinchu office No. 103, HsinChu County, Taiwan, R.O.C. (zip/postal code: 302) telephone +886 / 3 504 1020, telefax +886 / 3 504 0867

Thailand
Hakuto (Thailand) Ltd., 18th Floor, Chokchais Intíl Bldg. 695 Sukhumvit Rd. Klongton, Klongtoey Bangkok 10110 telephone +662 / 259 6244, telefax +662 / 259 6243

U.S.A.
Pfeiffer Vacuum, Inc., 24 Trafalgar Square Nashua, NH 03063-1988 USA telephone +1 / 603 578 6500, telefax +1 / 603 578 6550

Venezuela
Secotec S.A., Apartado 3452, Caracas 1010-A, telephone +58 / 212 578 8687, telefax +58 / 212 578 1932

Other countries
AVI - Applied Vacuum Industries GmbH Legingenstrasse 17A, CH-7320 Sargans Switzerland telephone +41 / 81 710 30 80, telefax +41 / 81 710 03 81

Scope of represented countries
Armenia, Azerbaijan, Bangladesh, Belarus, Bulgaria, Cambodia, Estonia, Georgia, Kazakhstan, Kingdom of Nepal, Kirghizia, Latvia, Lithuania, Maldavia, Philippines, P.R. China, Romania, Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan, Vietnam

A.E.M.S.
Advanced Equipment Materials and Systems P.O. Box 25 Führerweg 18 FL-9496 Balzers telephone +423 / 380 0550, telefax +423 / 380 0551

Scope of represented countries
Bahrein, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Oman, Pakistan, Saudi-Arabia, Sudan, Syria, Turkey, United Arab Emirates, Yemen

Zentrale/Headquarters
Pfeiffer Vacuum GmbH Berliner Str. 43 D-35614 Asslar Telefon 06441/802-0 Telefax 06441/802-202 Hotline 06441/802-333 www.pfeiffer-vacuum.de